Professor R. Goodman has discovered an error in [1, p. 48, lines 9–11] on which our results [2] depend. Nevertheless the construction can be saved in the following way.

We say that a function \(\phi \) on a group \(G \) is submultiplicative if \(\phi(gh) \leq \phi(g)\phi(h) \) for all \(g, h \in G \). For a locally compact group \(G \) we define \(E(G) \) to be the space of all continuous functions \(f \) such that

\[
\sup \{ |f(g)|\phi(g) : g \in G \} < \infty
\]

for every continuous submultiplicative function \(\phi \). This endowed with a natural topology is a complete locally convex space and it is a \(* \)-sub-algebra of \(L_1(G) \).

One can prove that if \(G \) is first countable, then \(E(G) \) has a commutative approximate identity \(\{ e_n \} \), \(n = 1, 2, \ldots \). On the other hand every measure \(\mu \) on \(\mathcal{K}(G) \) which defines an induced representation is a functional on \(E(G) \). It is a matter of simple computation to show that the vector

\[
\xi = \sum_{n=1}^{\infty} c_n e_n^* e_n,
\]

where \(c_n > 0 \) are such that the series is convergent in \(E(G) \), defines a cyclic vector for every representation \(L_\mu \) with \(\mu \in E(G)' \).

The details will appear in Studia Mathematica.

REFERENCES