Radicals and bimodules
Author:
D. M. Foster
Journal:
Proc. Amer. Math. Soc. 38 (1973), 47-52
MSC:
Primary 17A99
DOI:
https://doi.org/10.1090/S0002-9939-1973-0330242-9
MathSciNet review:
0330242
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In 1964, Andrunakievič and Rjabuhin showed that the general theory of radicals of associative rings may be presented in external form in the language of modules. In this paper, we show that this theory has a natural extension to varieties of algebras where, in this case, modules are replaced by bimodules. We close with some examples and a discussion of quadratic Jordan algebras.
- [1] T. Anderson, The Levitzki radical in varieties of algebras, Math. Ann. 194 (1971), 27-34. MR 0285564 (44:2782)
- [2] V. A. Andrunakievič and Ju. M. Rjabuhin, Modules and radicals, Dokl. Akad. Nauk SSSR 156 (1964), 991-994 = Soviet Math. Dokl. 5 (1964), 728-731. MR 32 #7596. MR 0190182 (32:7596)
- [3] N. J. Divinsky, Rings and radicals, Math. Expositions, no. 14, Univ. of Toronto Press, Toronto, Ont., 1965. MR 33 #5654. MR 0197489 (33:5654)
- [4] I. R. Hentzel, A note on modules and radicals, Proc. Amer. Math. Soc. 19 (1968), 1385-1386. MR 38 #4512. MR 0236214 (38:4512)
- [5] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Amer. Math. Soc., Providence, R.I., 1968. MR 40 #4330. MR 0251099 (40:4330)
- [6] -, Lectures on quadratic Jordan algebras, Tata Institute, Bombay, 1970.
- [7] K. McCrimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671-678. MR 42 #3137. MR 0268238 (42:3137)
- [8] -, Representations of quadratic Jordan algebras, Trans. Amer. Math. Soc. 153 (1971), 279-305. MR 42 #3139. MR 0268240 (42:3139)
- [9] J. M. Osborn, Representations and radicals of Jordan algebras (to appear). MR 0486030 (58:5821)
- [10] E. Sasiada and P. M. Cohn, An example of a simple radical ring, J. Algebra 5 (1967), 373-377. MR 34 #2629. MR 0202769 (34:2629)
- [11] C. Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171-1175. MR 37 #6336. MR 0230776 (37:6336)
- [12] P. J. Zwier, Prime ideals in a large class of nonassociative rings, Trans. Amer. Math. Soc. 158 (1971), 257-271. MR 43 #7478. MR 0281763 (43:7478)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17A99
Retrieve articles in all journals with MSC: 17A99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1973-0330242-9
Keywords:
Radical,
bimodule,
variety,
quadratic Jordan algebra
Article copyright:
© Copyright 1973
American Mathematical Society