ON COMPOSITION SERIES IN FINITE GROUPS

STEVEN BAUMAN

Abstract. Theorem. Let \(G \) be a finite group and \(H \) a solvable subgroup of \(G \). Suppose that the Schreier conjecture holds. Then \(G \) is solvable iff \(G \) has an \(H \)-composition series.

Let \(G \) be a group and \(H \leq G \). Let \(\{G_i\}_0^n \) be subnormal series with \(G_n = \{1\} \) and \(G_0 = G \). This series is called an \(H \)-composition series if \(H \) normalizes each \(G_i \), and if there exists no subgroup \(X \) properly between \(G_{i+1} \) and \(G_i \) which is normalized by \(H \).

If \(G \) is a finite solvable group then for all \(H \leq G \) such \(H \)-composition series exist. These can be obtained by refinement into irreducible \(H \)-factors of any chief series of \(G \). If \(G \) is not solvable then, for particular \(H \), such series may not exist. This is easily seen by letting \(G \) be simple nonabelian and \(H \) any proper subgroup.

The object of this note will be to shed some light on restrictions that one must have on finite groups \(G \) and \(H \leq G \) if such \(H \)-composition series occur.

All groups are finite. If \(\{G_i\}_0^n \) is a subnormal series of \(G \) we denote by \(G^{(i)} \) the factor \(G_{i-1}/G_i \) and call \(\{G^{(i)}\}_1^n \) the factors of the series. A factor of \(G \) is a group \(R/S \) where \(S \trianglelefteq R \leq G \). If \(K/L \) is a factor of \(G \) then we can in a natural way define \(\text{Aut}_G(K/L) \) as \(N(K) \cap N(L)/C(K/L) \) and \(\text{Out}_G(K/L) \) as \(N(K) \cap N(L)/KC(K/L) \). These groups correspond to the automorphisms and outer automorphisms that \(G \) induces on the factor \(K/L \). If \(\Sigma \) is a group, then \(\Sigma \) is said to be involved in \(G \) if \(\Sigma \) is isomorphic to some factor of \(G \).

If \(\Sigma \) is a nonabelian simple group, then \(K/L \) is called a \(\Sigma \)-factor if it is the direct product of isomorphic copies of \(\Sigma \).

If \(\Sigma \) is a nonabelian simple group the Schreier conjecture states that \(\text{Out}(\Sigma) = \text{Aut}(\Sigma)/\text{In}(\Sigma) \) is a solvable group. In what follows, if \(K/L \) is a simple nonabelian factor of \(G \) then if \(\text{Out}_G(K/L) \) is solvable we will say that \(G \) satisfies the Schreier conjecture with respect to the factor \(K/L \). Our result is

Theorem. Let \(H \leq G \) with \(H \)-composition series \(\{G_i\}_0^n \). Let \(\Sigma \) be a nonabelian simple group and \(G^{(i)} \) be a \(\Sigma \)-factor. Suppose \(G \) satisfies the Schreier conjecture with respect to the factor \(K/L \). Our result is

Received by the editors May 30, 1972.

© American Mathematical Society 1973

255

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
conjecture with respect to the simple summands of $G^{(i)}$. Then Σ is involved in H.

(Note that the simple summands of $G^{(i)}$ are all conjugate by elements of H and thus induced automorphism groups are isomorphic.)

Lemma 1. Let G be a semidirect product of K by H. If H is maximal in G and solvable then G is solvable.

Proof. By induction on $|G|$ we may assume that $\text{core}_G(H) = 1$. Let R/K be minimal normal in G/K. We have that R/K is a p group and $H = N(R \cap H)$. It follows that $R \cap H \in \text{Syl}_p(R)$ since if not we get $R \cap H < N(R)(R \cap H)$ which together with $R \cap H < H$ implies that $R \cap H < G$. Let $S \in \text{Syl}_p(K)$. The Frattini argument gives that $G = K \cdot N(S)$. Since $([K], p) = 1$ we get, by Sylow's theorem and a suitable choice of S, that $R \cap H \leq N_R(S)$. The Frattini argument applied to $R \cap N \leq N_R(S) < N(S)$ yields that $N(S) = N_H(S) \cdot N_R(S)$. Since $R = K \cdot (R \cap H)$, it follows by Dedekind's theorem that $N_R(S) = K \cdot (R \cap H) \cdot N(S) = (R \cap H) \cdot N_R(S)$. Thus we have that $N(S) = N_H(S) \cdot N_R(S)$ or that $G = N_H(S) \cdot K$. Since $G = HK$, $H \cap K = 1$, we arrive at $N_H(S) = H$ or $H < N(S)$. This forces $K = S$ and thus G is solvable.

Lemma 2. Let G be a semidirect product of K by H with H maximal in G. Suppose K is a Σ-factor where Σ is a nonabelian simple group. If G satisfies the Schreier conjecture for any simple direct summand of K then Σ is involved in H.

Proof. Let S be a simple direct summand of K. Then S is isomorphic to Σ. We can choose h_1, \cdots, h_t a full set of coset representatives of $N_H(S)$ in H and $K = S^{h_1} \times \cdots \times S^{h_t}$. Suppose a $1 < R \leq S$ such that $N_H(S)$ normalizes R. Since for $x \in N_H(S)$, $\exists 1 \leq l \leq k$, $y \in N_H(S)$, such that $h_i \times h_l = y \times h_i$ we get that $R^{h_1} \times \cdots \times R^{h_t}$ is normalized by H. This yields that $R = S$. Now induction applies to the semidirect product of S by $N_H(S)$. If $|S \cdot N_H(S)| < |G|$ we conclude that Σ is involved in $N_H(S)$ and therefore in H. Thus we can conclude that $K = S$. Let $T = C(S)$. Then $T < G$ and $T \cap S = 1$. If $T < H$ since H is maximal we get that $G = HT$. It follows that $S \triangleleft ST/T \cong ST \cap H/T \cap H$ and again Σ is involved in H. If $T \leq H$ we look at G/T. Our assumption of the Schreier conjecture yields G/ST and thus H/T solvable. Thus Lemma 1 applies to make G/T solvable. This final contradiction, since ST/T is not solvable, proves Lemma 2.

The proof of our theorem follows easily from Lemma 2. By the definition of H-composition series it is easy to see that H either covers or avoids each $G^{(i)}$. If H covers this factor then surely $G^{(i)}$ and thus Σ is involved in H.

If H avoids $G^{(i)}$ then we are in the situation that HG_{i-1}/G_i is a semidirect product of G_{i-1}/G_i by HG_i/G_i. By the H-irreducibility of $G^{(i)}$ we have that HG_i/G_i is maximal in HG_{i-1}/G_i. By our Lemma 2 we are done. Note that HG_{i-1}/G_i satisfies the Schreier conjecture with respect to any simple summand of $G^{(i)}$.

Corollary. Let $H \leq G$ with H solvable. Suppose that $Out_G(\Sigma)$ is solvable for all nonabelian simple factors Σ of G. Then G is solvable if and only if G has an H-composition series.