ON COMPOSITION SERIES IN FINITE GROUPS

STEVEN BAUMAN

Abstract. Theorem. Let G be a finite group and H a solvable subgroup of G. Suppose that the Schreier conjecture holds. Then G is solvable iff G has an H-composition series.

Let G be a group and $H \leq G$. Let $\{G_i\}_{i=0}^n$ be subnormal series with $G_0 = \{1\}$ and $G_n = G$. This series is called an H-composition series if H normalizes each G_i, and if there exists no subgroup X properly between G_{i+1} and G_i which is normalized by H.

If G is a finite solvable group then for all $H \leq G$ such H-composition series exist. These can be obtained by refinement into irreducible H-factors of any chief series of G. If G is not solvable then, for particular H, such series may not exist. This is easily seen by letting G be simple nonabelian and H any proper subgroup.

The object of this note will be to shed some light on restrictions that one must have on finite groups G and $H \leq G$ if such H-composition series occur. All groups are finite. If $\{G_i\}_{i=0}^n$ is a subnormal series of G we denote by $G(i)$ the factor G_{i-1}/G_i and call $\{G(i)\}_{i=0}^n$ the factors of the series. A factor of G is a group R/S where $S \leq R \leq G$. If K/L is a factor of G then we can in a natural way define $\text{Aut}_G(K/L)$ as $N(K) \cap N(L)/C(K/L)$ and $\text{Out}_G(K/L)$ as $N(K) \cap N(L)/KC(K/L)$. These groups correspond to the automorphisms and outer automorphisms that G induces on the factor K/L. If Σ is a group, then Σ is said to be involved in G if Σ is isomorphic to some factor of G. If Σ is a nonabelian simple group, then K/L is called a Σ-factor if it is the direct product of isomorphic copies of Σ.

If Σ is a nonabelian simple group the Schreier conjecture states that $\text{Out}(\Sigma) = \text{Aut}(\Sigma)/\text{In}(\Sigma)$ is a solvable group. In what follows, if K/L is a simple nonabelian factor of G then if $\text{Out}_G(K/L)$ is solvable we will say that G satisfies the Schreier conjecture with respect to the factor K/L. Our result is

Theorem. Let $H \leq G$ with H-composition series $\{G_i\}_{i=0}^n$. Let Σ be a nonabelian simple group and $G(i)$ be a Σ-factor. Suppose G satisfies the Schreier conjecture with respect to the factor K/L. Our result is
conjecture with respect to the simple summands of $G^{(i)}$. Then Σ is involved in H.

(Note that the simple summands of $G^{(i)}$ are all conjugate by elements of H and thus induced automorphism groups are isomorphic.)

Lemma 1. Let G be a semidirect product of K by H. If H is maximal in G and solvable then G is solvable.

Proof. By induction on $|G|$ we may assume that $\text{core}_G(H) = 1$. Let R/K be minimal normal in G. We have that R/K is a p group and $H = N(R \cap H)$. It follows that $R \cap H \in \text{Syl}_p(R)$ since if not we get $R \cap H < N_R(R \cap H)$ which together with $R \cap H < H$ implies that $R \cap H < G$. Let $S \in \text{Syl}_p(K)$. The Frattini argument gives that $G = K \cdot N(S)$. Since $(|K|, p) = 1$ we get, by Sylow's theorem and a suitable choice of S, that $R \cap H \leq N_R(S)$. The Frattini argument applied to $R \cap N \leq N_R(S) < N(S)$ yields that $N(S) = N_H(S) \cdot N_R(S)$. Since $R = K \cdot (R \cap H)$, it follows by Dedekind's theorem that $N_R(S) = K \cdot (R \cap H) \cdot N(S) = (R \cap H) \cdot N_R(S)$. Thus we have that $N(S) = N_H(S) \cdot N_R(S)$ or that $G = N_H(S) \cdot K$. Since $G = HK$, $H \cap K = 1$, we arrive at $N_H(S) = H$ or $H < N(S)$. This forces $K = S$ and thus G is solvable.

Lemma 2. Let G be a semidirect product of K by H with H maximal in G. Suppose K is a Σ-factor where Σ is a nonabelian simple group. If G satisfies the Schreier conjecture for any simple direct summand of K then Σ is involved in H.

Proof. Let S be a simple direct summand of K. Then S is isomorphic to Σ. We can choose h_1, \ldots, h_t a full set of coset representatives of $N_H(S)$ in H and $K = S^{h_1} \times \cdots \times S^{h_t}$. Suppose a $1 < R \leq S$ such that $N_H(S)$ normalizes R. Since for $x \in N_H(S), \exists 1 \leq l \leq k, y \in N_H(S)$, such that $h_l x h_l^{-1} = y \cdot h_l$ we get that $R^{h_1} \times \cdots \times R^{h_t}$ is normalized by H. This yields that $R=S$. Now induction applies to the semidirect product of S by $N_H(S)$. If $|S \cdot N_H(S)| < |G|$ we conclude that Σ is involved in $N_H(S)$ and therefore in H. Thus we can conclude that $K = S$. Let $T = C(S)$. Then $T \lhd G$ and $T \cap S = 1$. If $T \not\lhd H$ since H is maximal we get that $G = HT$. It follows that $S \not\leq ST/T \leq ST \cap H/T \cap H$ and again Σ is involved in H. If $T \leq H$ we look at G/T. Our assumption of the Schreier conjecture yields G/ST and thus H/T solvable. Thus Lemma 1 applies to make G/T solvable. This final contradiction, since ST/T is not solvable, proves Lemma 2.

The proof of our theorem follows easily from Lemma 2. By the definition of H-composition series it is easy to see that H either covers or avoids each $G^{(i)}$. If H covers this factor then surely $G^{(i)}$ and thus Σ is involved in H.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
If H avoids $G^{(i)}$ then we are in the situation that HG_{i-1}/G_i is a semidirect product of G_{i-1}/G_i by HG_i/G_i. By the H-irreducibility of $G^{(i)}$ we have that HG_i/G_i is maximal in HG_{i-1}/G_i. By our Lemma 2 we are done. Note that HG_{i-1}/G_i satisfies the Schreier conjecture with respect to any simple summand of $G^{(i)}$.

Corollary. Let $H \leq G$ with H solvable. Suppose that $\text{Out}_G(\Sigma)$ is solvable for all nonabelian simple factors Σ of G. Then G is solvable if and only if G has an H-composition series.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706