Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On convex power series of a conservative Markov operator


Authors: S. R. Foguel and B. Weiss
Journal: Proc. Amer. Math. Soc. 38 (1973), 325-330
MSC: Primary 28A65
DOI: https://doi.org/10.1090/S0002-9939-1973-0313476-9
MathSciNet review: 0313476
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A. Brunel proved that a conservative Markov operator, $ P$, has a finite invariant measure if and only if every operator $ Q = \Sigma _{n = 0}^\infty {\alpha _n}{P^n}$ where $ {\alpha _n} \geqq 0$ and $ \Sigma {\alpha _n} = 1$ is conservative.

In this note we give a different proof and study related problems.


References [Enhancements On Off] (What's this?)

  • [1] A. Brunel, New conditions for existence of invariant measures in ergodic theory, Contributions to Ergodic Theory and Probability (Proc. Conf. Ohio State Univ., Columbus, Ohio, 1970), Springer-Verlag, Berlin and New York, 1970, pp. 7-17. MR 42 #3253. MR 0268355 (42:3253)
  • [2] W. Feller, An introduction to probability theory and its applications. Vol. 1, 2nd ed., Wiley, New York, 1957. MR 19, 466. MR 0088081 (19:466a)
  • [3] S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand, Princeton, N.J., 1969. MR 41 #6299. MR 0261686 (41:6299)
  • [4] -, Remarks on conservative Markov processes, Israel J. of Math. 6 (1968), 381-583. MR 39 #4939. MR 0243618 (39:4939)
  • [5] Th. Kaluza, Über die Koeffizienten reziproker Potenzreihen, Math. Z. 28 (1928), 161-170. MR 1544949
  • [6] D. G. Kendall, Renewal sequences and their arithmetic, Sympos. on Probability Methods in Analysis, Springer-Verlag, Berlin and New York, 1967, pp. 147-175. MR 36 #7219. MR 0224175 (36:7219)
  • [7] S. T. C. Moy, Period of an irreducible operator, Illinois J. Math. 11 (1967), 24-39. MR 35 #2350. MR 0211470 (35:2350)
  • [8] D. Ornstein and L. Sucheston, An operator theorem on $ {L_1}$ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. MR 42 #6938. MR 0272057 (42:6938)
  • [9] F. Spitzer, Principles of random walk, Van Nostrand, Princeton, N.J., 1964. MR 30 #1521. MR 0171290 (30:1521)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A65

Retrieve articles in all journals with MSC: 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0313476-9
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society