PERFECT MAPS OF SYMMETRIZABLE SPACES

HAROLD W. MARTIN

Abstract. It is shown that if \(f: X \rightarrow Y \) is a perfect map from a symmetrizable space \(X \) onto a space \(Y \), then \(Y \) is metrizable if and only if \(f \) is a coherent map. This fact, together with certain known results, yields the following: Let \(f: X \rightarrow Y \) be a perfect map from a Hausdorff symmetrizable space \(X \) onto a space \(Y \); the following are equivalent: (1) \(X \) is metrizable; (2) \(f \) is a regular map; (3) \(f \) is a coherent map; (4) \(Y \) is metrizable.

A topological space \(X \) is said to be symmetrizable if there exists a nonnegative real valued function \(d \) on \(X \times X \), called a symmetric, which satisfies the following three conditions: (1) \(d(a, b) = 0 \) if and only if \(a = b \); (2) \(d(a, b) = d(b, a) \); (3) a subset \(A \) of \(X \) is closed if and only if whenever \(x \in X - A \), then \(d(x, A) > 0 \).

A function \(f: X \rightarrow Y \) from a space \(X \) onto a space \(Y \) is said to be coherent if the space \(X \) is symmetrizable via a symmetric \(d \) such that whenever \(\{a_n\} \) and \(\{b_n\} \) are sequences in \(X \) with \(d(a_n, b_n) \rightarrow 0 \) and \(f(a_n) \rightarrow y \) in \(Y \), then \(f(b_n) \rightarrow y \). Coherent maps are closely related to the regular maps of A. Arhangel'skii [1, p. 133]. Every regular map is a coherent map. The extent of coherent maps may be seen in the following, which is not difficult to prove: Let \(f: X \rightarrow Y \) be a function from a symmetrizable space \(X \) onto a metrizable space \(Y \); then, \(f \) is continuous if and only if \(f \) is a coherent map.

A map is perfect if it is closed, continuous, and point inverses are compact, i.e., bicomapct, sets.

Theorem 1. Let \(f: X \rightarrow Y \) be a perfect map from a symmetrizable space \(X \) onto a space \(Y \). Then, \(Y \) is metrizable if and only if \(f \) is a coherent map.

Proof. Assume that \(Y \) is metrizable. Let \(\rho \) be a symmetric for \(X \) and \(d \) be a metric for \(Y \). For points \(a \) and \(b \) in \(X \), let \(\sigma(a, b) = \rho(a, b) + d(f(a), f(b)) \). \(\sigma \) is a symmetric compatible with the topology for \(X \). It is easy to verify that \(f \) is a coherent map by virtue of the symmetric \(\sigma \).

Presented to the Society, January 28, 1972 under the title Perfect coherent maps of symmetrizable spaces; received by the editors April 10, 1972 and, in revised form, July 31, 1972.

Key words and phrases. Metrizable space, symmetrizable space, symmetric, \(G_\delta \)-diagonal, perfect map, coherent map, regular map.
To prove the converse, assume that \(f \) is a coherent map by virtue of a symmetric \(\sigma \) for the space \(X \). For \(a, b \in Y \), define \(d(a, b) = \rho(f^{-1}(a), f^{-1}(b)) \). We shall show that the space \(Y \) is symmetrizable via \(d \). Clearly, \(d(a, b) = d(b, a) \) for all \(a, b \in Y \). That \(d(a, b) = 0 \) if and only if \(a = b \) follows easily from the fact that \(f \) is a coherent map and \(Y \) is a \(T_1 \) space. Let \(A \) be a closed subset of \(Y \) and \(y \in Y - A \). If \(d(y, A) = 0 \), then \(\rho(f^{-1}(y), f^{-1}[A]) = 0 \) and there would exist sequences \(\{b_n\} \) in \(f^{-1}(y) \) and \(\{a_n\} \) in \(f^{-1}[A] \) such that \(\rho(a_n, b_n) \to 0 \); since \(f(b_n) \to y \), we would have \(f(a_n) \to y \), contradicting the closedness of \(A \). Consequently, \(d(y, A) > 0 \). Finally, assume that \(B \) is not a closed subset of \(Y \). Since \(f \) is a quotient map, \(f^{-1}[B] \) is not a closed subset of \(X \). Therefore, there exists \(x \in X - f^{-1}[B] \) such that \(\rho(x, f^{-1}[B]) = 0 \). Then \(d(f(x), B) = 0 \), and we have completed the proof that the space \(Y \) is symmetrizable via \(d \).

Let \(A \) be a compact subset of \(Y \) and \(B \) be a closed subset of \(Y \) such that \(d(A, B) = 0 \). Then \(\rho(f^{-1}[A], f^{-1}[B]) = 0 \) and since \(f^{-1}[A] \) is compact, there exists \(x \in f^{-1}[A] \) and sequences \(\{a_n\} \) in \(f^{-1}[A] \) and \(\{b_n\} \) in \(f^{-1}[B] \) such that \(a_n \to x \) and \(\rho(a_n, b_n) \to 0 \). Since \(f \) is a coherent map, we have \(f(b_n) \to f(x) \). Since \(B \) is closed, it follows that \(f(x) \in B \) so that \(A \) and \(B \) are not disjoint. Hence, if \(A \) and \(B \) are disjoint subsets of \(Y \) with \(A \) compact and \(B \) closed, then \(d(A, B) > 0 \). By Theorem 2 of [3], \(d \) is a coherent distance function. The metrizability of \(Y \) now follows by a theorem of Niemytzki and Wilson [5], [8], completing the proof.

If a Hausdorff space \(X \) maps perfectly onto a metrizable space, then \(X \) is metrizable if and only if \(X \) has a \(G_\delta \)-diagonal [2], [6]. Recall also that the perfect image of a metrizable space is metrizable [4], [7]. These facts, together with Theorem 1, yield the following:

Theorem 2. Let \(f : X \to Y \) be a perfect map from a symmetrizable Hausdorff space \(X \) onto a space \(Y \). The following are equivalent:

1. \(X \) is metrizable.
2. \(f \) is a regular map.
3. \(f \) is a coherent map.
4. \(Y \) is metrizable.

Proof. Assume that \(X \) is metrizable. Then \(Y \) is metrizable. It follows that \(f \) is regular [1, p. 134], so that (1) implies (2). As seen in [3], every regular map is coherent, so that (2) implies (3). (3) implies (4) by Theorem 1. Finally, assume that \(Y \) is metrizable. Then \(X \) is regular; any regular space which maps onto a first countable space by a closed map with first countable point inverses is itself first countable, i.e., \(X \) is a first countable space. This completes the proof since any first countable symmetrizable Hausdorff space has a \(G_\delta \)-diagonal.
The Hausdorff condition on X in Theorem 2 cannot be completely removed since there exist non-Hausdorff compact symmetrizable spaces.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PENNSYLVANIA 15213