Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The fundamental ideal and $ \pi \sb{2}$ of higher dimensional knots


Author: S. J. Lomonaco
Journal: Proc. Amer. Math. Soc. 38 (1973), 431-433
MSC: Primary 57C45
DOI: https://doi.org/10.1090/S0002-9939-1973-0339193-7
MathSciNet review: 0339193
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ ({S^4},k({S^2}))$ be a knot formed by spinning a polyhedral arc $ \alpha $ about the standard $ 2$-sphere $ {S^2}$ in the $ 3$-sphere $ {S^3}$. Then the second homotopy group of $ {S^4} - k({S^2})$ as a $ Z{\pi _1}$-module is isomorphic to each of the following:

(1) The fundamental ideal modulo the left ideal generated by $ a - 1$, where $ a$ is the image in $ {\pi _1}({S^4} - k({S^2}))$ of a generator of $ {\pi _1}({S^2} - \alpha )$.

(2) The first homology group of the kernel of $ {\pi _1}({S^3} - k({S^2})) \to {\pi _1}({S^4} - k({S^2}))$


References [Enhancements On Off] (What's this?)

  • [1] R. H. Crowell and R. H. Fox, Introduction to knot theory, Ginn, Boston, Mass., 1963. MR 26 #4348. MR 0146828 (26:4348)
  • [2] Ch. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 19, 761. MR 0090053 (19:761a)
  • [3] Emil Artin, Zur isotopie zweidimensional Flachen im $ {R^4}$, Abh. Math. Sem. Univ. Hamburg. 4 (1925), 174-177.
  • [4] J. J. Andrews and S. J. Lomonaco, The second homotopy group of $ 2$-spheres in $ 4$-space, Bull. Amer. Math. Soc. 75 (1969), 169-171. MR 38 #3863. MR 0235559 (38:3863)
  • [5] J. J. Andrews and S. J. Lomonaco, The second homotopy group of $ 2$-spheres in $ 4$-space, Ann. of Math. (2) 90 (1969), 199-204. MR 40 #3547. MR 0250308 (40:3547)
  • [6] S. J. Lomonaco, Jr., The second homotopy group of a spun knot, Topology 8 (1969), 95-98. MR 38 #6594. MR 0238318 (38:6594)
  • [7] -, The third homotopy group of higher dimensional knots (to appear).
  • [8] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
  • [9] Sze-Tsen Hu, Homotopy theory, Pure and Appl. Math., vol. 8, Academic Press, New York, 1959. MR 21 #5186. MR 0106454 (21:5186)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57C45

Retrieve articles in all journals with MSC: 57C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0339193-7
Keywords: Spun knot, homotopy groups, homology groups, integral group ring, fundamental ideal, universal covering, fibration, Mayer-Vietoris sequence, Eilenberg-Mac Lane space
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society