Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pro-nilpotent representation of homology types


Author: Emmanuel Dror
Journal: Proc. Amer. Math. Soc. 38 (1973), 657-660
MSC: Primary 55D15
DOI: https://doi.org/10.1090/S0002-9939-1973-0314041-X
MathSciNet review: 0314041
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The completion tower $ {R_n}X$ defined by Bousfield and Kan is shown to preserve the homology with $ R$-coefficients. This property of preserving $ R$-homology characterizes the tower completely [4].


References [Enhancements On Off] (What's this?)

  • [1] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math., no. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883. MR 0245577 (39:6883)
  • [2] A. Bousfield and D. Kan, Localization and completion in homotopy theory, Bull. Amer. Math. Soc. 77 (1971), 1006-1010. MR 0296935 (45:5994)
  • [3] -, Homotopy with respect to a ring, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R.I., 1971, pp. 59-64. MR 0326734 (48:5077)
  • [4] -, Homotopy limits, completions and localizations, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1972. MR 0365573 (51:1825)
  • [5] E. Dror, A generalization of the Whitehead theorem, Sympos. on Algebraic Topology, P. Hilton (editor), Lecture Notes in Math., no. 249, Springer-Verlag, New York, 1971. MR 0350725 (50:3217)
  • [6] J. Duskin, Pro-objects, Seminar Heidelberg, Strasbourg, Inst. de Recherche Math. avancée, Strasbourg, 1966-67, Exposé 6.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55D15

Retrieve articles in all journals with MSC: 55D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0314041-X
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society