THE COMMUTATOR SUBGROUP MADE ABELIAN

JOEL M. COHEN

Abstract. A theorem on covering spaces is proved which yields the following information about a group \(\pi \), its commutator subgroup \(\pi' \) and their abelianizations: If \(\pi^{ab} \cong \mathbb{Z}_p^n \), a cyclic group of order a power of the prime \(p \), then \(\pi^{ab} = p\pi^{ab} \). Hence if \(\pi \) is also finitely generated, then \(\pi^{ab} \) is finite of order prime to \(p \).

The purpose of this note is to prove the following theorem and some related results:

Theorem 1. Let \(X \) be a connected CW complex with \(H_1(X) \cong \mathbb{Z}_p^n \). Let \(X' \) be the normal \(p^n \)-fold covering space of \(X \) with transformation group \(\mathbb{Z}_p^n \). Then \(H_1(X') \) is \(p \)-divisible. In particular, if \(\pi_1X \) is finitely generated, then \(\pi_1X' \) is also so \(H_1(X') \) is finite of order prime to \(p \).

Notation. If \(\pi \) is a group, \(\pi' = [\pi, \pi] \) is the commutator subgroup and \(\pi^{ab} = \pi / \pi' \) is its abelianization.

An immediate corollary is

Theorem 2. If \(\pi^{ab} \cong \mathbb{Z}_p^n \), a cyclic group of order a power of the prime \(p \), then \(\pi^{ab} \) is \(p \)-divisible; i.e. \(\pi^{ab} = p\pi^{ab} \).

Theorem 2 follows from Theorem 1 by observing that the Eilenberg-Mac Lane space \(K(\pi', 1) \) is the \(p^n \)-fold covering space of \(K(\pi, 1) \) and \(H_1(K(\pi', 1)) = \pi^{ab} \), \(H_1(K(\pi', 1)) = \pi^{ab} \).

The proof of Theorem 1 is based on the homology Serre Spectral Sequence of the fibration \(X' \to X \to K(\mathbb{Z}_p^n, 1) \): \(E^2_* = H_*(\mathbb{Z}_p^n; H_*(X')) \) (local coefficients based on the action of \(\mathbb{Z}_p^n \) on \(X' \)) converging to \(H_*(X) \) (simple \(\mathbb{Z} \)-coefficients).

Because it is a first quadrant spectral sequence there is an exact sequence

\[
E^2_{2,0} \to E^2_{0,1} \to H_1(X) \to E^2_{1,0} \to 0.
\]
But $E_{s,0}^2 = H_s(Z_{p^n}; H_0(X')) = H_s(Z_{p^n})$ which is Z_{p^n} for $s = 1$ and 0 for $s = 2$. Since $H_1(X) \to H_1(Z_{p^n})$ is an isomorphism, we conclude that

$$H_0(Z_{p^n}; H_1(X')) = E_{0,1}^2 = 0.$$

The theorem is proved once we show:

Proposition. If G is a finite p-group and $H_0(G; M) = 0$ for some G-module M, then M is p-divisible.

Proof. $H_0(G; M) = M/[M]$ where $I = \ker \epsilon : Z[G] \to Z$ is the augmentation. So $H_0(G; M) = 0$ means $M = IM$. The proposition will be proved if we can show that for some integer N, $I^N \subseteq pI$, whence $M = I^N M \subseteq pIM = pM$. This is equivalent to showing that $J = I \otimes Z_p = \ker \epsilon \otimes Z_p$ is nilpotent. This is well known [1, p. 703] but for completeness we prove it here for the case $G = Z_n$: Let t be the generator of Z_{p^n} (written multiplicatively). $t^{p^n} = 1$. Then $J = (t-1)Z_{p^n}G$. $J^{p^n} = (t-1)^{p^n}Z_{p^n}G$. But modulo p, $(t-1)^{p^n} \equiv (t^{p^n} - 1) \equiv 0$ so $J^{p^n} = 0$.

Reference

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104