Homogeneous solution of a nonlinear differential equation

Author:
James L. Reid

Journal:
Proc. Amer. Math. Soc. **38** (1973), 532-536

MSC:
Primary 34A05

MathSciNet review:
0318542

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The nonlinear second order differential equation satisfied by the homogeneous function , is obtained. Functions and satisfy independently the linear equation . The nonlinear equation derived contains previous results as special cases of , of the constants , and , and of the numbers and .

**[1]**Edmund Pinney,*The nonlinear differential equation 𝑦”+𝑝(𝑥)𝑦+𝑐𝑦⁻³=0*, Proc. Amer. Math. Soc.**1**(1950), 681. MR**0037979**, 10.1090/S0002-9939-1950-0037979-4**[2]**James L. Reid,*An exact solution of the nonlinear differential equation 𝑦+𝑝(𝑡)𝑦=𝑞_{𝑚}(𝑡)/𝑦^{2𝑚-1}*, Proc. Amer. Math. Soc.**27**(1971), 61–62. MR**0269907**, 10.1090/S0002-9939-1971-0269907-4**[3]**J. M. Thomas,*Equations equivalent to a linear differential equation*, Proc. Amer. Math. Soc.**3**(1952), 899–903. MR**0052001**, 10.1090/S0002-9939-1952-0052001-3**[4]**Robert Taylor Herbst,*The equivalence of linear and nonlinear differential equations*, Proc. Amer. Math. Soc.**7**(1956), 95–97. MR**0076115**, 10.1090/S0002-9939-1956-0076115-0**[5]**H. R. Lewis, Jr.,*Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians*, Phys. Rev. Lett.**18**(1967), 510.**[6]**M. D. Kostin,*Linear differential equation for the radial distribution function of quantum mechanics*, J. Chem. Phys.**54**(1971), 2739.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34A05

Retrieve articles in all journals with MSC: 34A05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1973-0318542-X

Keywords:
Exact homogeneous solution,
nonlinear second order differential equation,
homogeneous linear differential equation

Article copyright:
© Copyright 1973
American Mathematical Society