Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Coverings of infinite-dimensional spheres


Author: William H. Cutler
Journal: Proc. Amer. Math. Soc. 38 (1973), 653-656
MSC: Primary 58B05; Secondary 57A20
DOI: https://doi.org/10.1090/S0002-9939-1973-0319221-5
MathSciNet review: 0319221
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a normed linear space such that the countable infinite product of $ F$ is homeomorphic to a normed linear space. (This is true for all Hilbert spaces, for example.) Let $ S(F)$ denote the unit sphere in $ F$. We prove the following

Theorem 1. There is a countable cover of $ S(F)$ of open sets each of which contains no pair of antipodal points.

Theorem 2. There is a countable collection of closed sets in $ S(F)$ the union of which contains exactly one member of each pair of antipodal points.

Theorem 3. Let $ F$ be a Hilbert space. Then there is a countable collection of sets which cover $ S(F)$ and whose diameters are less than 2.


References [Enhancements On Off] (What's this?)

  • [1] Cz. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1964/65), 251-288. MR 31 #2580. MR 0178322 (31:2580)
  • [2] -, Topological equivalence of unseparable reflexive Banach spaces. Ordinal resolutions of identity and monotone bases, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 397-399. MR 36 #4321. MR 0221269 (36:4321)
  • [3] Cz. Bessaga and V. L. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964), 211-220. MR 31 #5055. MR 0180825 (31:5055)
  • [4] Cz. Bessaga and A. Pełczyński, Some remarks on homeomorphisms of Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 757-761. MR 24 #A2230. MR 0132385 (24:A2230)
  • [5] W. H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668-675. MR 40 #2133. MR 0248883 (40:2133)
  • [6] D. W. Henderson and R. Schori, Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121-124. MR 40 #4976. MR 0251749 (40:4976)
  • [7] V. L. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960/61), 25-34. MR 23 #A3985. MR 0126690 (23:A3985)
  • [8] A. P. Lundell and Stephen Weingram, The topology of CW complexes, Van Nostrand Reinhold, New York, 1969.
  • [9] G. W. Whitehead, Homotopy theory, M.I.T. Press, Cambridge, Mass., 1966. MR 33 #4935. MR 0091469 (19:974c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58B05, 57A20

Retrieve articles in all journals with MSC: 58B05, 57A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0319221-5
Keywords: Infinite-dimensional manifold, sphere, normed linear space, projective space
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society