A NOTE ON PATHS THROUGH O

ROHIT PARIKH

Abstract. We show that a hyperarithmetic set can be truth table reduced to a Π^1_1-path through O iff it is truth table reducible to some r.e. set.

It is known from results of Feferman and Spector [1] that while there are no Σ^1_1-paths through O, there do exist Π^1_1 such paths. Here by a path is meant a linearly ordered subset P of O, closed under $<_O$ and having order type ω_1.

In this note we prove

Theorem 1. If P is a Π^1_1-path through O, A is hyperarithmetic, and A is truth table reducible to P, then the Turing degree of A is at most $0'$. Thus in a certain sense such paths contain very little "information". It is not known if a hyperarithmetic set of Turing degree greater than $0'$ can be Turing reduced to such a path.

Proof. We shall actually prove a somewhat stronger fact. If P is a Π^1_1-path through O and A is truth table reducible to P, then either A is truth table reducible to a proper segment of P (which is necessarily r.e.) or else all of P is used in an essential way, and then one can go backwards and arithmetically decide P from A.

So suppose the Turing degree of A is not $\leq 0'$ and A is truth table reducible to such a path P. Then there exists a z such that, for all n, $C_A(n) = U(\mu y T^P(z, n, y))$ and moreover, for all $X \subseteq N$, $U(\mu y T^X(z, n, y))$ is a total function of n. (See [4, p. 143, Theorem XIX].)

Now by (1) there exists a $d \in O^*$ and an r.e. ordering \leq such that $P \subseteq P_1 = \{y | y \leq d\}$, \leq is a linear ordering on P_1 and P is the maximal well ordered segment of P_1. (In fact, \leq is that r.e. linear ordering which restricts on O to $<_O$.)

Consider pairs (a, b), $a, b \in P_1$, $a < b$, and consider a z-computation of $C_A(n)$ where: whenever the machine asks, "does $m \in P$?" the answer given is "yes" if $m \leq a$, "no" if $m \notin P_1$ or $b \leq m$, and no answer is given if neither condition holds. We will say that (a, b) is adequate for n if the correct value of $C_A(n)$ is computed in this way.

Received by the editors April 11, 1972.

AMS (MOS) subject classifications (1970). Primary 02F27.

Key words and phrases. Path through O, truth table reducible, Turing degree, hyperarithmetic.

© American Mathematical Society 1973

178
A note on paths through O

Clearly, there is an (a, b) adequate for a given n and in fact for finitely many n. For consider the actual computations of $C_A(n_i)$, $i=1, \ldots, k$, from P itself. Let $a=\max$ relative to \leq of all yes answers given and $b=\min$ of all no answers, then (a, b) is adequate for n_1, \ldots, n_k. In this case we shall have $a \in P, b \notin P$. However, it is conceivable that (a, b) is adequate for the n_i's and yet both (or neither) of a, b are in P. Note that if (a, b) is adequate for n, $a < a' < b' \leq b$ then (a', b') is adequate for n.

We will say that (a, b) is good, if for all $F \subseteq N$, F finite, there are a', b', $a \leq a' < b' \leq b$ such that (a', b') is adequate for (every element of) F. The predicate $G(a, b)$ ((a, b) is good) is arithmetical in A and hence hyperarithmetic.

Now we claim that if $G(a, b)$, then $\exists X, \{y | y \leq a\} \subseteq X \subseteq \{y | y \leq b\}$ and $C_A(n) = U(\mu y T^X(z, n, y))$.

For note that if $a < c < b$ and $G(a, b)$ then either $G(a, c)$ or $G(c, b)$. Otherwise there are finite sets F_1, F_2 such that no pair (a', b') contained in (a, c) is adequate for F_1, and no pair (a', b') contained in (c, b) is adequate for F_2. But then no pair (a', b') contained in (a, b) is adequate for $F_1 \cup F_2$ contradicting the goodness of (a, b). (Either (a', b') is contained in (a, c) or in (c, b) or else (a', c) is adequate for F_1.)

Now given $G(a, b)$, let c_1, c_2, \ldots be an enumeration of P. Define (a_i, b_i) by:

$(a_0, b_0) = (a, b)$,
$(a_{n+1}, b_{n+1}) = (a_n, b_n)$ unless $a_n < c_{n+1} < b_n$,
(a_{n+1}, c_{n+1}) if $a_n < c_{n+1} < b_n$ and $G(a_n, c_{n+1})$,
(c_{n+1}, b_n) otherwise.

Then $G(a_n, b_n)$ holds for all n and no x can satisfy $a_n < x < b_n$ for all n. Let X be the set $\{x | (\exists n)(x \leq a_n)\}$. Claim $U(\mu y T^X(z, n, y))$ always equals $C_A(n)$.

Otherwise (by choice of z) there is a p such that $U(\mu y T^X(z, p, y))$ is defined and unequal to $C_A(p)$. Consider a, the maximum (in \leq) of all the “yes” answers during this computation from X. Similarly b is the minimum of all “no” answers for elements of P. Then there is an n such that $a \leq a_n < b_n \leq b$. But clearly (a_n, b_n) cannot be good since no pair (a', b') contained in (a, b) can be adequate for $\{p\}$.

Thus $G(a, b)$ implies $b \notin P$. Otherwise an X such as above would be a proper segment of P, and hence r.e. But clearly $b \in P_1 - P$ implies that for all $a \in P$, $G(a, b)$. Hence we get

$x \in P \leftrightarrow x \in P_1 \land \neg (\exists a)(G(a, x))$,

a contradiction since P is not hyperarithmetic. Q.E.D.
It is fairly straightforward to show that the lower bound on the degree of A is best possible.

Theorem 2. There is a Π^1_1-path P through O such that the set $A = \{n|(\exists y)T(n, n, y)\}$ is 1-1 reducible to P.

Proof. Define an ordering R on N by

$$R(x, z) \iff (\exists y)(T(x, x, y) \land (\forall u \leq y)(\neg T(z, z, u))).$$

This is a partial ordering, the elements in A are a sequence of type ω and the elements not in A are a set of incomparables above this sequence. Now apply the construction of [3, p. 45] to this ordering. We get a function g from N to O such that $g[N-A]$ is a set of incomparables and if $x \in A$, $y \in N-A$ then $g(x) <_O g(y)$. Take any $x_0 \in N-A$ and pick $d \in O^*$ such that $g(x_0) <_O d$. The path P corresponding to d has the required property.

Remark. Note that A is in fact 1-1 reduced to a proper segment S of P. $P-S$ plays no role, since $g[A] \subseteq S$ and $g[N-A] \subseteq N-P$.

References

2. G. Kreisel, *Which number theoretic problems can be solved in recursive progressions on Π^1_1-paths through O?*, J. Symbolic Logic 37 (1972), 311–334.

Department of Mathematics, Boston University, Boston, Massachusetts 02215

1 This result was also found, independently and simultaneously by C. Jockusch.