Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A multiple exchange property for bases

Author: Curtis Greene
Journal: Proc. Amer. Math. Soc. 39 (1973), 45-50
MSC: Primary 05B35
MathSciNet review: 0311494
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ and $ Y$ be bases of a combinatorial geometry $ G$, and let $ A$ be any subset of $ X$. Then there exists a subset $ B$ of $ Y$ with the property that $ (X - A) \cup B$ and $ (Y - B) \cup A$ are both bases of $ G$.

References [Enhancements On Off] (What's this?)

  • [1] Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109–133. MR 0286673
  • [2] C. Greene, Lectures on combinatorial geometries, Bowdoin College, Brunswick, Me., 1971 (mimeographed notes).
  • [3] C. Greene, G.-C. Rota and N. White, Coordinates and combinatorial geometries (to appear).
  • [4] Gian-Carlo Rota, Combinatorial theory, old and new, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 229–233. MR 0505646
  • [5] -, Combinatorial theory, Bowdoin College, Brunswick, Me., 1971. (mimeographed notes).
  • [6] Neil White (ed.), Combinatorial geometries, Encyclopedia of Mathematics and its Applications, vol. 29, Cambridge University Press, Cambridge, 1987. MR 921064
  • [7] W. Whitely, Logic and invariant theory, Thesis, M.I.T., Cambridge, Mass., 1971.
  • [8] Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091, 10.2307/2371182

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05B35

Retrieve articles in all journals with MSC: 05B35

Additional Information

Keywords: Combinatorial geometries, bases, exchange property, Laplace expansion
Article copyright: © Copyright 1973 American Mathematical Society