Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Approximations of arithmetical functions by additive ones


Author: János Galambos
Journal: Proc. Amer. Math. Soc. 39 (1973), 19-25
MSC: Primary 10K20
DOI: https://doi.org/10.1090/S0002-9939-1973-0311614-5
MathSciNet review: 0311614
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\varepsilon _p}(n) = 1$ or 0 according as $ p\vert n$ or not. Since the functions $ {\varepsilon _p}(n) - 1/p$ are quasi-orthogonal on the integers $ 1,2, \cdots ,N$ with the relative frequency as measure, the theory of orthogonal expansions suggests an approximation of arbitrary arithmetical functions by strongly additive ones. In the present note, the approximating additive functions are determined and a sufficient condition is given for an arithmetical function to have an asymptotic distribution. Examples are given to illustrate the result.


References [Enhancements On Off] (What's this?)

  • [1] A. Bakštys, On the asymptotic distribution of multiplicative number theoretic functions, Litovsk. Mat. Sb. 8 (1968), 5-20. (Russian) MR 40 #4231.
  • [2] P. Erdös, On the density on some sequences of numbers. III, J. London Math. Soc. 13 (1938), 119-127.
  • [3] J. Galambos, A probabilistic approach to mean values of multiplicative functions., J. London Math. Soc. (2) 2 (1970), 405–419. MR 0274411
  • [4] J. Galambos, Distribution of arithmetical functions. A survey, Ann. Inst. H. Poincaré Sect. B (N.S.) 6 (1970), 281–305. MR 0297728
  • [5] János Galambos, On the distribution of strongly multiplicative functions, Bull. London Math. Soc. 3 (1971), 307–312. MR 0291106, https://doi.org/10.1112/blms/3.3.307
  • [6] János Galambos, On the asymptotic distribution of values of arithmetical functions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 126–131 (English, with Italian summary). MR 0330087
  • [7] J. Kubilius, Probabilistic methods in the theory of numbers, Translations of Mathematical Monographs, Vol. 11, American Mathematical Society, Providence, R.I., 1964. MR 0160745
  • [8] -, On the distribution of values of arithmetic functions, Trudy Mat. Inst. Steklov. (to appear).
  • [9] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467 (German). MR 0223318, https://doi.org/10.1007/BF02280301

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10K20

Retrieve articles in all journals with MSC: 10K20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0311614-5
Keywords: Arithmetical functions, additive, multiplicative, limiting distribution, asymptotic mean value, approximation, quasi-orthogonal functions, Erdös theorem, Turán-Kubilius inequality
Article copyright: © Copyright 1973 American Mathematical Society