RINGS SATISFYING MONOMIAL CONSTRAINTS

MOHAN S. PUTCHA¹ AND ADIL YAQUB

Abstract. The following theorem is proved: Suppose R is an associative ring and suppose J is the Jacobson radical of R. Suppose that for all x_1, \cdots, x_n in R, there exists a word $w_{x_1, \cdots, x_n}(x_1, \cdots, x_n)$, depending on x_1, \cdots, x_n, in which at least one x_i (i varies) is missing, and such that $x_1 \cdots x_n = w_{x_1, \cdots, x_n}(x_1, \cdots, x_n)$. Then J is a nil ring of bounded index and R/J is finite. It is further proved that a commutative nil semigroup satisfies the above identity if and only if it is nilpotent.

In this paper, we investigate the structure of an associative ring R with the property that, for all x_1, \cdots, x_n in R, $x_1 \cdots x_n = w_{x_1, \cdots, x_n}(x_1, \cdots, x_n)$, where w is a word, depending on x_1, \cdots, x_n, and where some x_i (i varies) is missing in w. For such a ring R, we prove the Jacobson radical J is a nil ring of bounded index. We also show that R/J is finite. Finally, we show that a commutative nil semigroup satisfies the above identity if and only if it is nilpotent.

In preparation for the proofs of the main results, we first introduce

Definition 1. Let n be a positive integer, and let S be a semigroup. We say that S is a β^n-semigroup if, for all x_1, \cdots, x_n in S, there exists a word $w_{x_1, \cdots, x_n}(x_1, \cdots, x_n)$ consisting of a product of the x_i's with some x_j (j varies) missing, such that $x_1 \cdots x_n = w_{x_1, \cdots, x_n}(x_1, \cdots, x_n)$. A ring R is called a β^n-ring if its multiplicative semigroup is a β^n-semigroup.

Lemma 1. Let S be a finite semigroup or a nilpotent semigroup. Then S is a β^n-semigroup, for some n.

Proof. First, suppose S is finite, of order n, and suppose x_1, \cdots, x_{n+1} are any elements of S. Then $x_i = x_j$ for some $i > j$, and hence

$$x_1 \cdots x_{n+1} = x_1 \cdots x_j \cdots x_{i-1}x_jx_{i+1} \cdots x_{n+1}$$

$$= w(x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}).$$

Thus S is a β_{n+1}-semigroup. Next, suppose S is nilpotent, say, $S^n = (0)$.

Presented to the Society, January 18, 1972; received by the editors August 10, 1971 and, in revised form, October 6, 1971.

¹ The author was supported by a National Science Foundation Graduate Fellowship.
Then, for all elements x_1, \cdots, x_{m+1} of S, we have
$$x_1 \cdots x_{m+1} = 0 = x_1 \cdots x_m.$$ Thus S is a β_{m+1}-semigroup, and the lemma is proved.

We now pause to give an example of a β_n-ring which is not of the type described in Lemma 1. To this end, let R_0 be an infinite field of characteristic 2, and let
$$R = \left\{ \begin{pmatrix} a & u \\ 0 & 0 \end{pmatrix} \mid a \in GF(2), u \in R_0 \right\}.$$ It is readily verified that R is a β_3-ring. Indeed, $x_1x_2x_3 = x_2x_3$ if
$$x_1 = \begin{pmatrix} 1 & u \\ 0 & 0 \end{pmatrix},$$ while $x_1x_2x_3 = x_1x_2$ if
$$x_1 = \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix}.$$ Moreover, R is neither finite nor nilpotent and, in fact, R is not isomorphic to any finite direct sum of finite or nilpotent rings. (An example of an infinite β_n-group is given in Remark 1 below.)

Lemma 2. Let S be a β_n-semigroup. Then any subsemigroup of S and any homomorphic image of S are also β_n-semigroups.

This follows at once from the definition.

Lemma 3. Let S be a β_n-semigroup. Then there exists a fixed positive integer k with the property that, for any a in S, there is an integer $l > k$ such that $a^k = a^l$.

Proof. Let q_1, \cdots, q_n be the first n positive primes, and let
$$m_i = (q_1 \cdots q_n)/q_i \quad (i = 1, \cdots, n).$$ Let $k = m_1 + \cdots + m_n$. Now, since S is a β_n-semigroup, there exists a word $w(a^{m_1}, \cdots, a^{m_n})$, with some a^{m_j} missing in the word w, such that
$$a^k = (a^{m_1}) \cdots (a^{m_n}) = w(a^{m_1}, \cdots, a^{m_n}) \equiv a^l.$$ Since a^{m_j} is missing from w, it follows, by (1), that q_j divides l. But, by (1) again, q_j does not divide k, and hence $l \neq k$. Now, if in (2), $l < k$, then by iterating in (2), we can make $l > k$. This proves the lemma.

Notation 1. Let Z^+ denote the set of all positive integers, and let
$$D(s) = \{ m \mid m \in Z^+, m \text{ divides } s \}; \quad P(s) = \{ m \mid m \in D(s), m \text{ is prime} \}.$$
If S is any nonempty subset of \mathbb{Z}^+, then

$$D(S) = \bigcup_{s \in S} D(s) \quad \text{and} \quad P(S) = \bigcup_{s \in S} P(s).$$

Lemma 4. Let S be any infinite set of positive integers and let $P(S)$ be finite. Then there exists $q \in P(S)$ such that $q^i \in D(S)$ for all $i \in \mathbb{Z}^+$.

Proof. If the lemma were false, then $D(S)$ would be finite, since $P(S)$ is finite. But $D(S)$ is infinite, since $D(S) \supseteq S$.

In preparation for the proof of the next lemma, we first state the following two well-known results. The proof of Lemma A appears in [4, p. 164], while the proof of Lemma B appears in [6, p. 2].

Lemma A. Let a be an integer and n an integer > 1. Let $\Phi_n(x)$ denote the cyclotomic polynomial of order n [5, p. 60]. If a prime number p divides $\Phi_n(a)$, then either $p \mid n$ or $n \mid p - 1$.

Lemma B. Let l be a prime number and a an integer > 1. Then $\Phi_l(a)$ is a multiple of l if and only if $a \equiv 1 \pmod{l}$. If $a \equiv 1 \pmod{l}$, then the l-order of $\Phi_l(a)$ is equal to 1 except in the case where $l = 2$, $v = 1$, and $a \equiv 3 \pmod{4}$.

For any v, $\mu > 0$, $v \neq \mu$, $\gcd(\Phi_{\mu}(a), \Phi_{\nu}(a)) = 1$ or l.

Corollary. Let l be a prime number, a an integer > 1, and suppose $a \equiv 1 \pmod{l}$. Then there exist infinitely many prime numbers dividing $\Phi_{l^{\nu}}(a)$, $\Phi_{l^\mu}(a), \ldots$ for any increasing sequence $\nu_1, \nu_2, \ldots \to \infty$.

We are now in a position to prove

Lemma 5. Let a be an integer > 1 and let

$$T = \{k_i \mid i \in \mathbb{Z}^+\}$$

be a strictly increasing sequence of positive integers such that k_i divides k_{i+1} for each i. Let

$$S = \{a^{k_i} - 1 \mid i \in \mathbb{Z}^+\}.$$

Then $P(S)$ is infinite.

Proof. We distinguish two cases.

Case 1. $P(T)$ is infinite. Let $E_i = \{p_1, \ldots, p_i\}$ be a finite set of prime numbers, and k'_1, k'_2, \ldots be the series of integers such that

$$k'_{n} = p_1^{e_1 \cdot n} \cdots p_i^{e_i \cdot n} k'_{n} \quad (k'_n, p_1 \cdots p_i) = 1.$$

Then, since $P(T)$ is infinite, $\lim_{n \to \infty} k'_n = \infty$. Hence, for any n with $k'_{n} \geq \max(p_1, \ldots, p_i)$, we conclude, using Lemma A, that p_1, \ldots, p_i do not divide $\Phi_{k'_n}(a)$. Moreover, since k'_{n} divides k'_n, $\Phi_{k'_n}(a)$ divides $a^{k'_n} - 1$. Thus, if p is any prime divisor of $\Phi_{k'_n}(a)$, then p divides $a^{k'_n} - 1$ and, clearly, $p \neq p_i$ ($i = 1, \ldots, l$). Hence $P(S)$ is infinite.
Case 2. \(P(T) \) is finite. In this case, we argue by contradiction. Thus suppose \(P(S) \) is finite. Since \(P(T) \) is finite, it follows by Lemma 4 that there exists \(l \in P(T) \) such that

\[
l^j \in D(T) \quad \text{for all } j \in \mathbb{Z}^+.
\]

Now, let

\[
S' = \{ a^j - 1 \mid j \in \mathbb{Z}^+ \}.
\]

Then, by (5) and (3), \(l^j \mid k_i \) for some \(k_i \), and hence \(a^j - 1 \mid a^{k_i} - 1 \). Therefore \(P(S') \subseteq P(S) \), and hence \(P(S') \) is finite. Thus, there exists \(k \in \mathbb{Z}^+ \) such that

\[
P(a^k - 1) = P(a^{k+1} - 1).
\]

Moreover, observe that \(a^{k+1} - 1 = (a^k - 1)w \), where

\[
w = (a^k)^{k-1} + \cdots + (a^k) + 1.
\]

Now, let \(t \in P(w) \). Then \(t \in P(a^{k+1} - 1) = P(a^k - 1) \), and hence \(a^k \equiv 1 \mod t \). Combining this with (8), we get \(0 \equiv w \equiv l \mod t \), and hence \(t \mid l \). Therefore \(t = l \). Moreover, by Fermat's Little Theorem, \(a^{l} \equiv a \mod l \) and hence \(a^k \equiv a \mod l \). Combining this with \(a^k \equiv 1 \mod (l) \), we obtain \(a \equiv 1 \mod l \). Hence, by the corollary to Lemma B, there exists infinitely many prime numbers dividing \(\Phi_{v_1}(a) \), \(\Phi_{v_2}(a) \), etc. for any increasing sequence \(v_1, v_2, \cdots \to \infty \). Moreover, since \(\Phi_{v_1}(a) \) divides \(a^{v_1} - 1 \), and recalling (6), we conclude that \(P(S') \) is finite. But, as we have shown above, \(P(S') \) is infinite. This contradiction proves the lemma.

We call a field \(F \) periodic if, for every \(x \) in \(F \), we have \(x^m = x^n \) for some positive integers \(m, n, m \neq n \).

Theorem 1. Suppose that \(F \) is a \(\beta_n \)-field. Then \(F \) is finite.

Proof. Suppose \(F \) is infinite. Since, by Lemma 3, \(F \) is periodic, \(F \) has a prime characteristic \(p \). Moreover, the subfield \(\langle x \rangle \) generated by a single element \(x \) in \(F \) is finite, and hence

\[
x^{p^k} = x \quad \text{for some positive integer } k = k(x).
\]

Now, for each \(j \in \mathbb{Z}^+ \), define the finite field

\[
F_j = \{ x \mid x \in F, x^{p^j} = x \}.
\]

Then, in view of (9) and (10), we have (since if \(x \in F \) satisfies (9), then \(x \in F_k \))

\[
F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots ; \text{ each } F_i \text{ is a subfield of } F; \bigcup_{i \in \mathbb{Z}^+} F_i = F.
\]
Now, since F is infinite, we can find a subsequence of (11) such that

$$(12) \quad F_{i_1} \subseteq F_{i_2} \subseteq F_{i_3} \subseteq \cdots,$$

and again $\bigcup_{k \in \mathbb{Z}^+} F_{i_k} = F$.

Moreover, the order of $F_{i_\sigma} = p^{k_\sigma} (\sigma \in \mathbb{Z}^+)$. Next, let

$$S = \{ p^{k_\sigma} - 1 \mid \sigma \in \mathbb{Z}^+ \}.$$

Then, as is well known, $k_\sigma | k_{\sigma+1}$ for each $\sigma \in \mathbb{Z}^+$, and $k_\sigma < k_{\sigma+1}$, by (12). Hence, by Lemma 5, $P(S)$ is infinite, and there, therefore, exist n distinct primes q_1, \cdots, q_n in $P(S)$. Thus, there exists $m_j \in \mathbb{Z}^+$ such that

$$(13) \quad q_j \in P(p^{k_{m_j}} - 1) \quad (j = 1, \cdots, n).$$

Now, since the nonzero elements of the field $F_{i_{m_j}}$ form a multiplicative group of order $p^{k_{m_j}} - 1$, and since the prime $q_j | p^{k_{m_j}} - 1$, it follows, by Cauchy’s Theorem, that there exists $x_j \in F_{i_{m_j}} (\subseteq F)$ such that

$$\text{order of } x_j = q_j \quad (j = 1, \cdots, n).$$

Moreover, since F is a β_n-field, there exists a word $w(x_1, \cdots, x_n)$, with some x_j missing, such that

$$(14) \quad x_1 \cdots x_n = w(x_1, \cdots, x_n).$$

But, by (14), the order of $x_1 \cdots x_n = q_1 \cdots q_n$, while the order of $w(x_1, \cdots, x_n) \leq (q_1 \cdots q_n)/q_j$ (since x_j does not appear in w), a contradiction. This contradiction proves the theorem.

Corollary 1. Any β_n-division ring D is finite.

Proof. By Lemma 3, D is periodic, and hence, for any $x \in D$, we have $x^m = x^k$, for some m, k, $m \neq k$. Therefore, $x^{r(x)} = x$ for some $r(x) > 1$, and hence by Jacobson’s Theorem [2, p. 217], D is a field. The corollary now follows at once from Theorem 1.

Corollary 2. Any β_n-primitive ring R is finite.

Proof. By Jacobson’s Density Theorem [2, p. 33], either $R \cong D_m$, where D_m is a complete matrix ring over a division ring D, in which case we are done by Corollary 1 and Lemma 2, or D_{n+1} is a homomorphic image of some subring R_0 of R. Now, by Lemma 2, D_{n+1} is a β_n-ring also. Let $x_i \in D_{n+1}$ be the matrix with 1 in the $(i, i+1)$ position and zero elsewhere:

$$(16) \quad x_i = E_{i,i+1} \quad (i = 1, \cdots, n).$$

It is readily verified that

$$(17) \quad x_1 \cdots x_n = E_{1,n+1} \not= 0, \quad \text{and} \quad x_i x_j \not= 0 \quad \text{if and only if} \quad j = i + 1.$$

Since D_{n+1} is a β_n-ring, we have

$$(18) \quad x_1 \cdots x_n = w(x_1, \cdots, x_n); \quad \text{some } x_j \text{ missing in } w.$$
In view of (17) and (18), we obtain $w(x_1, \cdots, x_n) \neq 0$ and thus (see (17))
\[(19) \quad w(x_1, \cdots, x_n) = x_\sigma x_{\sigma+1} x_{\sigma+2} \cdots x_{\sigma+\tau}; \quad \sigma \neq 1 \text{ or } \sigma + \tau \neq n.
\]
Hence, by (16)-(19), we obtain $E_{1,n+1} = E_{\sigma, \sigma+\tau+1}$, and thus $\sigma = 1$ and $\sigma + \tau = n$, which contradicts (19). This proves the corollary.

Next, we prove the following:

Lemma 6. Let R_1, \cdots, R_n be associative rings with identities. Then the direct sum $R_1 + \cdots + R_n$ is not a β_n-ring.

Proof. Suppose that $R_1 + \cdots + R_n$ is a β_n-ring, and define
\[(20) \quad x_i = (1, 1, \cdots, 1, 0, 1, 1, \cdots, 1),
\]
0 is in the ith position ($i = 1, \cdots, n$).
Since $R_1 + \cdots + R_n$ is a β_n-ring, there exists a word $w(x_1, \cdots, x_n)$ such that
\[(21) \quad x_1 \cdots x_n = w(x_1, \cdots, x_n); \text{ some } x_j \text{ missing in } w.
\]
Comparing the jth coordinates of both sides of (21), we obtain $0 = 1$ (since x_j is missing in w), a contradiction. This proves the lemma.

Lemma 7. Let R be an associative ring, and let I_1, I_2 be ideals of R with $I_1 \not\subseteq I_2$ and R/I_2 simple. Then $R/I_1 \cap I_2 \cong R/I_2 + R/I_2$.

Proof. Since R/I_2 is simple and $I_1 \not\subseteq I_2$, $I_1 + I_2 = R$, and hence, by the second isomorphism theorem,
\[
R/I_1 \cap I_2 \cong I_1/I_1 \cap I_2 + I_2/I_1 \cap I_2 \cong R/I_2 + R/I_2.
\]
We are now in a position to prove the following fundamental

Theorem 2. Let R be a semisimple ring. Then R is a β_n-ring, for some n, if and only if R is finite.

Proof. Suppose that R is a β_n-ring and suppose R is infinite. We shall show that this leads to a contradiction. Since R is semisimple, there exist ideals I_α ($\alpha \in \Omega$) of R such that \[2, p. 14\] $\bigcap_{\alpha \in \Omega} I_\alpha = (0)$, and each R/I_α is primitive.

By Corollary 2 and Lemma 2, each R/I_α is finite, and hence \[2, p. 33\] each of the primitive rings R/I_α is a complete matrix ring over a finite field. Thus each R/I_α is a simple ring with identity. Next, choose $\alpha_1 \in R$, and having chosen $\alpha_1, \cdots, \alpha_k$ so that $\sum_{i=1}^k R/I_{\alpha_i} \cong R/\bigcap_{i=1}^k I_{\alpha_i}$, choose $\alpha_{k+1} \in \Omega$ such that $\bigcap_{i=1}^k I_{\alpha_i} \not\subseteq I_{\alpha_{k+1}}$. That such α_{k+1} can always be so chosen is proved as follows: Suppose no such α_{k+1} exists. Then $(0) = \bigcap_{\alpha \in \Omega} I_\alpha = \bigcap_{i=1}^k I_{\alpha_i}$, and hence
\[
R \cong R/\bigcap_{i=1}^k I_{\alpha_i} \cong \sum_{i=1}^k R/I_{\alpha_i}.
\]
Thus R is finite, a contradiction. This contradiction shows that there exists $\alpha_{k+1} \in \Omega$ such that $\bigcap_{i=1}^{k} I_{a_i} \subseteq I_{\alpha_{k+1}}$. Hence, by Lemma 7,

$$R/I_{a_{k+1}} \cong R/I_{a_{k+1}} \sum_{i=1}^{k+1} R/I_{a_i}.$$

In particular, we obtain

$$\sum_{i=1}^{n} R/I_{a_i} \cong R/I_{a_{k+1}}.$$

Now, by Lemma 2, $R/\bigcap_{i=1}^{n} R/I_{a_i}$ is a β_n-ring, and hence $\sum_{i=1}^{n} R/I_{a_i}$ is a β_n-ring also, which contradicts Lemma 6. This contradiction shows that R is finite. The converse part follows at once from Lemma 1.

Combined with Lemma 3, we easily obtain

Corollary 3. Let R be an associative β_n-ring with Jacobson radical J. Then J is a nil ring of bounded index, and R/J is finite.

In the above corollary, it follows [1, p. 28] that the Jacobson radical is locally nilpotent. It is not known to the authors whether the Jacobson radical must be nilpotent. However we have

Theorem 3. Let S be a commutative nil semigroup. Then S is a β_n-semigroup, for some n, if and only if S is nilpotent.

Proof. Let S be a β_n-semigroup. By Lemma 3, $x^k=0$ for all $x \in S$. So there exists a least positive integer q for which a positive integer m exists such that, for all $a_1, \cdots, a_m \in S$,

$$a_1 q \cdots a_m = 0 \quad (q \text{ minimal}).$$

(22)

We now assume that $q > 1$ and obtain a contradiction. Let $a_1, \cdots, a_m \in S$, and for each i, $0 \leq i \leq n-1$, define $x_{i+1} = a_{i+1}^{m+1} \cdots a_{i+m}^{m+1}$. Then, since S is commutative and $q \geq 2$, we have by (22), $x_{i+1}^q = 0$ for each i. Since S is a β_n-semigroup,

$$x_1 \cdots x_n = w(x_1, \cdots, x_n) = w, \text{ some } x_j \text{ missing in } w.$$

(23)

Now, if some x_i appears twice in the word w, then by (23), $x_1 \cdots x_n = 0$. Otherwise, since S is commutative and x_j does not appear in w, we can write $x_1 \cdots x_n = v$, where v is a product of at least one x_i. Hence, by (23), we have $v = wv = wv = 0$, and hence once again $x_1 \cdots x_n = 0$. Hence, $a_{i+1}^{m+1} \cdots a_{i+m}^{m+1} = 0$. This contradicts the minimality of q, and hence $q=1$. Therefore, by (22), $a_1 \cdots a_m = 0$, and thus S is nilpotent. The converse follows at once from Lemma 1.
Combined with Corollary 3, we easily obtain

Corollary 4. Let R be a commutative associative β_n-ring with Jacobson radical J. Then J is nilpotent and R/J is finite.

We conclude with the following two remarks.

Remark 1. The group-theoretic analogue of Theorem 1 is false. Indeed, the group $\mathbb{Z}(p\infty)$, which consists of the set of all p^nth roots of unity, where p is a fixed prime and $n=0, 1, 2, \cdots [3, p. 4]$, is a β_2-semigroup. To prove this, suppose that $x_1, x_2 \in \mathbb{Z}(p\infty)$. Then, for some integer n, $x_1, x_2 \in \mathbb{Z}(p^n)$, where $\mathbb{Z}(p^n)$ is the group of all p^nth roots of unity. Let σ be a generator of $\mathbb{Z}(p^n)$. Then

\begin{equation}
(24) \quad x_1 = \sigma^r, \quad x_2 = \sigma^s; \quad 1 \leq r \leq p^n, 1 \leq s \leq p^n.
\end{equation}

Now, let

\begin{equation}
(25) \quad r = r_0 p^i, \quad s = s_0 p^j; \quad (r_0, p) = 1, (s_0, p) = 1,
\end{equation}

and suppose, without loss of generality, that $i \leq j$. Since $(r/p^i, p) = 1$, there exists a solution x to

\begin{equation}
(26) \quad r/p^i \equiv s/p^j \mod p^n,
\end{equation}

and hence $rxp^{-i} \equiv s \mod p^n$. Thus, $r+s \equiv r(1+xp^{-i}) \mod p^n$, and hence

\begin{equation}
(27) \quad \sigma^r + \sigma^s = (\sigma^r)^{1+xp^{-i}},
\end{equation}

since $\sigma^p = 1$. Therefore $x_1x_2 = (x_1)^{1+xp^{-i}}$ and thus $\mathbb{Z}(p\infty)$ is a β_2-semigroup.

Remark 2. The converse of Corollary 4 is false. To see this, let F be an infinite field of characteristic 2, and let

\begin{equation}
(28) \quad R = \left\{ \left(\begin{array}{cc} a & x \\ 0 & a \end{array} \right) \mid a \in GF(2), x \in F \right\}.
\end{equation}

It is readily verified that the Jacobson radical J of R satisfies $J^2 = (0)$, and, moreover, $R/J \cong GF(2)$. However, R is not a β_n-ring for any n. We prove this by contradiction. Thus, suppose that R is a β_n-ring for some integer n, and define

\begin{equation}
(29) \quad T = \left\{ \left(\begin{array}{c} 1 \\ 0 \\ x \\ 1 \end{array} \right) \mid x \in F \right\}.
\end{equation}

By Lemma 2, T is a β_n-semigroup. Moreover, the mapping

\begin{equation}
(30) \quad \sigma: x \rightarrow \left(\begin{array}{c} 1 \\ 0 \\ x \\ 1 \end{array} \right) \quad (x \in F)
\end{equation}

is easily seen to yield an isomorphism of $F(+) \simeq F(x)$ onto $T(\times)$. But [3, p. 17] $F(+) \cong$ a direct sum of an infinite number of nontrivial finite cyclic groups G_i ($i \in \Gamma$).
Now, let $a_i \in G_i$; $a_i \neq 0$; $i = 1, \ldots, n$, and let the elements x_i of F be defined by (see (29))

$$x_i = (0, 0, \ldots, 0, a_i, 0, 0, \ldots) \quad i = 1, \ldots, n,$$

where a_i appears in the ith position. Let x'_i be the element of T defined by

$$x'_i = \begin{pmatrix} 1 & x_i \\ 0 & 1 \end{pmatrix} (= \sigma(x_i)), \quad i = 1, \ldots, n.$$

Since T is a β_n-semigroup, there exists a word $w = w_{x_{1}', \ldots, x_n'} (x_{1}', \ldots, x_n')$, with some x'_j missing in w, such that

$$x'_1 \cdots x'_n = w_{x_{1}', \ldots, x_n'} (x_{1}', \ldots, x_n').$$

Now, in view of the isomorphism σ, this equation reflects in $F(\cdot)$ as (see (28) and (31))

$$x_1 + \cdots + x_n = w^* (x_1, \ldots, x_n),$$

where $w^* = w^* (x_1, \ldots, x_n)$ is the (additive) word obtained by replacing "\(\times\)" by "\(+\)" throughout the word w, and by replacing each x'_i by x_i. Moreover, since x'_i is missing in w, x_j is missing in the word w^*. Now, equating the jth coordinates of both sides of (33) (see (30)), we get $a_j = 0$ (since $w^* (x_1, \ldots, x_n)$ does not involve x_j), which contradicts the choice of a_j. This contradiction proves that R is not a β_n-ring.

In conclusion, we wish to express our indebtedness and gratitude to the referee for his valuable suggestions.

References