Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Multipliers for the space of almost-convergent functions on a semigroup


Authors: Ching Chou and J. Peter Duran
Journal: Proc. Amer. Math. Soc. 39 (1973), 125-128
MSC: Primary 43A07; Secondary 43A22
MathSciNet review: 0315356
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a countably infinite left amenable cancellative semigroup, $ FL(S)$ the space of left almost-convergent functions on $ S$. The purpose of this paper is to show that the following two statements concerning a bounded real function $ f$ on $ S$ are equivalent: (i) $ f \cdot FL(S) \subset FL(S)$; (ii) there is a constant $ \alpha $ such that for each $ \varepsilon > 0$ there exists a set $ A \subset S$ satisfying (a) $ \varphi ({X_A}) = 0$ for each left invariant mean $ \varphi $ on $ S$ and (b) $ \vert f(x) - \alpha \vert < \varepsilon $ if $ x \in S\backslash A$.


References [Enhancements On Off] (What's this?)

  • [1] Ching Chou, The multipliers of the space of almost convergent sequences, Illinois J. Math. 16 (1972), 687–694. MR 0315365
  • [2] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 0092128
  • [3] Mahlon M. Day, Semigroups and amenability, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 5–53. MR 0265502
  • [3] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
  • [5] E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 0144197
  • [6] S. P. Lloyd, Subalgebras in a subspace of 𝐶(𝑋), Illinois J. Math. 14 (1970), 259–267. MR 0264400
  • [7] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 0027868

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 43A22

Retrieve articles in all journals with MSC: 43A07, 43A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315356-1
Keywords: Amenable semigroups, almost-convergence, multipliers, invariant means, weak Cauchy sequences
Article copyright: © Copyright 1973 American Mathematical Society