Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multipliers for the space of almost-convergent functions on a semigroup


Authors: Ching Chou and J. Peter Duran
Journal: Proc. Amer. Math. Soc. 39 (1973), 125-128
MSC: Primary 43A07; Secondary 43A22
DOI: https://doi.org/10.1090/S0002-9939-1973-0315356-1
MathSciNet review: 0315356
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a countably infinite left amenable cancellative semigroup, $ FL(S)$ the space of left almost-convergent functions on $ S$. The purpose of this paper is to show that the following two statements concerning a bounded real function $ f$ on $ S$ are equivalent: (i) $ f \cdot FL(S) \subset FL(S)$; (ii) there is a constant $ \alpha $ such that for each $ \varepsilon > 0$ there exists a set $ A \subset S$ satisfying (a) $ \varphi ({X_A}) = 0$ for each left invariant mean $ \varphi $ on $ S$ and (b) $ \vert f(x) - \alpha \vert < \varepsilon $ if $ x \in S\backslash A$.


References [Enhancements On Off] (What's this?)

  • [1] C. Chou, The multipliers for the space of almost convergent sequences, Illinois J. Math. 16 (1972), 687-694. MR 0315365 (47:3914)
  • [2] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067. MR 0092128 (19:1067c)
  • [3] -, Semigroups and amenability, Proc. Sympos. Semigroups (Wayne State Univ., Detroit, Mich., 1968), Academic Press, New York, 1969, pp. 5-53. MR 42 #411. MR 0265502 (42:411)
  • [3] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32-48. MR 26 #1744. MR 0144197 (26:1744)
  • [6] S. P. Lloyd, Subalgebras in a subspace of $ C(X)$, Illinois J. Math 14 (1970), 259-267. MR 41 #8995. MR 0264400 (41:8995)
  • [7] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. MR 10, 367. MR 0027868 (10:367e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 43A22

Retrieve articles in all journals with MSC: 43A07, 43A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315356-1
Keywords: Amenable semigroups, almost-convergence, multipliers, invariant means, weak Cauchy sequences
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society