Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A class of flag transitive planes


Author: M. L. Narayana Rao
Journal: Proc. Amer. Math. Soc. 39 (1973), 51-56
MSC: Primary 50D35
DOI: https://doi.org/10.1090/S0002-9939-1973-0315583-3
MathSciNet review: 0315583
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of translation affine planes of order $ {q^2}$, where $ q$ is a power of a prime $ p \geqq 3$ is constructed. These planes have an interesting property that their collineation groups are flag transitive.


References [Enhancements On Off] (What's this?)

  • [1] J. André, Über nicht-Desarguesche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186. MR 16, 64. MR 0063056 (16:64a)
  • [2] E. Artin, The orders of linear groups, Comm. Pure Appl. Math. 8 (1955), 355-366. MR 17, 12. MR 0070642 (17:12d)
  • [3] D. A. Foulser, The flag-transitive collineation groups of the finite Desarguesian affine planes, Canad. J. Math. 16 (1964), 443-472. MR 29 #3549. MR 0166272 (29:3549)
  • [4] -, Solvable flag transitive affine groups, Math. Z. 86 (1964), 191-204. MR 30 #1190. MR 0170956 (30:1190)
  • [5] C. Hering, Eine nicht-desarguesche zweifach transitive affine Ebene der Ordnung 27, Abh. Math. Sem. Univ. Hamburg 34 (1969/70), 203-208. MR 42 #8390. MR 0273512 (42:8390)
  • [6] M. L. Narayana Rao, A flag transitive plane of order 49, Proc. Amer. Math. Soc. 32 (1972), 256-262. MR 0290244 (44:7428)
  • [7] A. Wagner, On finite affine Une transitive planes, Math. Z. 87 (1965), 1-11. MR 30 #2391. MR 0172165 (30:2391)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 50D35

Retrieve articles in all journals with MSC: 50D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315583-3
Keywords: Projective planes, affine planes, flag transitivity, Veblen-Wedderburn systems
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society