A NOTE ON INDICATOR-FUNCTIONS

J. MYHILL

Abstract. A system has the existence-property for abstracts (existence property for numbers, disjunction-property) if whenever $\vdash (\exists x)A(x)$, $\vdash A(t)$ for some abstract (t) ($\vdash A(n)$ for some numeral n; if whenever $\vdash A \lor B$, $\vdash A$ or $\vdash B$. $(\exists x)A(x)$, A, B are closed).

We show that the existence-property for numbers and the disjunction property are never provable in the system itself; more strongly, the (classically) recursive functions that encode these properties are not provably recursive functions of the system. It is however possible for a system (e.g., $\mathbf{ZF} + V = L$) to prove the existence-property for abstracts for itself.

In [1], I presented an intuitionistic form \mathbf{Z} of Zermelo-Frankel set-theory (without choice and with weakened regularity) and proved for it the disjunction-property (if $\vdash A \lor B$ (closed), then $\vdash A$ or $\vdash B$), the existence-property (if $\vdash (\exists x)A(x)$ (closed), then $\vdash A(t)$ for a (closed) comprehension term t) and the existence-property for numerals (if $\vdash (\exists x \in \omega)A(x)$ (closed), then $\vdash A(n)$ for a numeral n). In the appendix to [1], I enquired if these results could be proved constructively; in particular if we could find primitive recursively from the proof of $A \lor B$ whether it was A or B that was provable, and likewise in the other two cases.

Discussion of this question is facilitated by introducing the notion of indicator-functions in the sense of the following

Definition. Let T be a consistent theory which contains Heyting arithmetic (possibly by relativization of quantifiers). Then (where f_\vee, f_3, $f_\omega : \omega \rightarrow \omega$)

f_\vee is an indicator-function for disjunction\equivfor all n, $f_\vee(n)$ is 0 or 1, and if n is (the Gödel-number of) a proof of $A \lor B$, then $f_\vee(n) = 0$ implies $\vdash A$ while $f_\vee(n) = 1$ implies $\vdash B$;

f_3 is an indicator-function for existence\equivfor all n, if n is a proof of $(\exists x)A(x)$, then $f_3(n)$ is the Gödel-number of a term t for which $\vdash A(t)$; and

f_ω is an indicator-function for numerical existence\equivfor all n, if n is a proof of $(\exists x \in \omega)A(x)$, then $f_\omega(n)$ is a number k for which $\vdash A(k)$.
With this definition, I was asking in [1] whether Z possesses primitive recursive indicator-functions. I showed that no $f_{3\omega}$ was primitive recursive, but was emboldened by some unpublished work of Staples on 'combinator realizability' to conjecture that f_ν and f_3 could be chosen primitive recursive. The purpose of this note is to prove that for no T can we find f_ν or $f_{3\omega}$ which are provably recursive functions in T (let alone primitive recursive). The problem for f_3 remains open for the particular system Z of [1], but in general f_3 can be primitive recursive (e.g. if $T =$ classical $ZF + (\forall = L)$).

Theorem. Let f_ν be an indicator-function for T. Then f_ν is not provably recursive in T.

Proof. Suppose it were; i.e. suppose that, for some number e,

$$f_\nu(n) = U(\mu y)T(e, n, y)$$

and

$$\vdash (\forall x)(\exists y)T(e, x, y).$$

Let $h_\nu(n)$ be a provably recursive function of T which enumerates all primitive recursive functions. Define (formally in T

$$\Delta \equiv \{n \in \omega \mid f_\nu h_\nu(n) \neq 0\}.$$

Then

$$\vdash (\forall x \in \omega)(x \in \Delta \forall \forall x \in \Delta).$$

Let h_k be a primitive recursive function such that, for each number n, $h_k(n)$ is a proof of $n \in \Delta \forall \forall n \in \Delta$.

Then

$$k \in \Delta \to f_\nu h_k(k) = 1$$

$$\to h_k(k) \text{ proves } (k \in \Delta \forall \forall k \in \Delta) \land \vdash \forall k \in \Delta$$

$$\to k \notin \Delta \quad (\text{since } T \text{ is consistent}).$$

Conversely

$$k \notin \Delta \to f_\nu h_k(k) = 0$$

$$\to h_k(k) \text{ proves } (k \in \Delta \forall \forall k \in \Delta) \land \vdash k \in \Delta$$

$$\to k \in \Delta \quad (\text{since } T \text{ is consistent}).$$

This is a contradiction. Q.E.D.

Corollary 1. T cannot prove the disjunction-property for T.
Proof. If $\vdash (\forall A \forall B \neg) (\neg A \land \neg B)$ closed and Thm $\neg A \lor B \rightarrow$ Thm $\neg A \lor \neg B$ then

$$f_v \equiv \lambda x k(\mu y)[(x \text{ is not a proof of any } \neg A \lor B \land y = 0)$$

$$\lor (x \text{ is a proof of some } \neg A \lor B)$$

$$\land l(y) \text{ proves } \neg A \land k(y) = 0)$$

$$\lor (x \text{ is a proof of some } \neg A \lor B)$$

$$\land l(y) \text{ proves } \neg B \land k(y) = 1)]$$

would be an indicator-function provably recursive in T, contradicting the theorem. (Here k and l are the inverses of a primitive recursive pairing-function.)

Corollary 2. f_{3^ω} is not provably recursive in T.

Proof. We have $f_v(n) = f_{3^\omega} b(n)$, where b is a primitive recursive function such that if m proves $A \lor B$, then $b(m)$ proves $(\exists x)((x = 0 \land A) \lor (x = 1 \land B))$. If f_{3^ω} were provably recursive, so would be f_v, contradicting the theorem.

Corollary 3. T cannot prove the existence-property for numerals for T.

Proof from Corollary 2 as Corollary 1 was proved from the theorem.

As we said above, the corresponding results for f_3 fail unless some additional conditions are placed on T. The principal open problem is to formulate these conditions and prove or disprove that they apply to systems like that of [1].

Reference