EVERY $n \times n$ MATRIX Z WITH REAL SPECTRUM SATISFIES

$$\|Z - Z^*\| \leq \|Z + Z^*\| (\log n + 0.038)$$

W. KAHAN

Abstract. The title’s inequality is proved for the operator bound-norm in a unitary space. An example is exhibited to show that the inequality cannot be improved by more than about 8% when n is large. The numerical range, of an $n \times n$ matrix Z with real spectrum, is then shown to be not arbitrarily different in shape from the spectrum.

The norm in question is the matrix bound-norm in a unitary space; $\|B\| = \max_{v \neq 0} \|Bv\|/\|v\|$ where the vector norm is $\|v\| = (v^*v)^{1/2}$.

Publication of the title’s inequality was stimulated by work of Alan McIntosh ([1971], [1972]) on questions posed by Tosio Kato, but the inequality has some interesting aspects of its own. First, the surprising appearance of the logarithm function is unavoidable because for every $n \geq 1$ an example exists of an $n \times n$ matrix Z, with real spectrum, which satisfies

$$\|Z - Z^*\|/\|Z + Z^*\| > (2/\pi) (\log n + \frac{1}{2} - \frac{1}{2} \log 2 + 1/2n);$$

and $(2/\pi) \log n \approx 0.92 \log_e n$. Secondly, the inequality implies that the numerical range—the range of values taken by v^*Zv/v^*v as v runs through all nonzero vectors—cannot differ arbitrarily in shape from the spectrum of Z when that spectrum is real. These assertions are elaborated and proved in §§1 and 2 below.

0. Proof of the title’s inequality. Schur’s theorem allows any $n \times n$ matrix Z to be transformed into an upper-triangular matrix by a unitary similarity without changing $\|Z - Z^*\|$ nor $\|Z + Z^*\|$ nor Z’s spectrum, which appears on the triangular matrix’s diagonal. Therefore let us restrict attention to $n \times n$ upper-triangular matrices Z with real diagonal. Then $Z \neq 0$ if and only if $Z + Z^* \neq 0$, so we might as well normalize the nonzero matrices Z to satisfy $\|Z + Z^*\| = 1$, from which it follows that no element of Z can exceed 1 in magnitude and hence $\|Z - Z^*\| \leq n - 1$. Now we seek an estimate for $\beta_n = \max \|Z - Z^*\|$ over $n \times n$ upper-triangular $Z \neq 0$ with

Received by the editors August 11, 1972.

Key words and phrases. Matrix with real spectrum, numerical range.

© American Mathematical Society 1973

235
real diagonal and \(\|Z+Z^*\| = 1\), from which we hope to deduce \(\beta_n \leq \log_2 n + 0.038\). Observe that the maximum sought is the maximum of a continuous function over a compact set, so the maximum is achieved at some \(Z_n\) (not uniquely determined) for each \(n\), and \(Z_n\) must satisfy: \(Z_n\) is \(n \times n\) upper-triangular with real diagonal, \(\|Z_n + Z_n^*\| = 1\), \(\|Z_n - Z_n^*\| = \beta_n\).

For example, \(Z_1 = (1/2)\) and \(\beta_1 = 0\), and \(Z_2 = (0, 1)\) and \(\beta_2 = 1\), as may be verified by elementary computation. We might as well assume further that \(\beta_n\) is the largest eigenvalue of \(i(Z_n - Z_n^*)\); otherwise replace \(Z_n\) by \(-Z_n\); and we shall let \(x_n\) denote a corresponding eigenvector,

\[
u(Z_n - Z_n^*)x_n = \beta_n x_n \quad (\nu \equiv \sqrt{(-1)})
\]

normalized so that \(\|x_n\| = 1\).

For any \(n > 2\) choose \(k = \lfloor n/2 \rfloor\) (the greatest integer in \(n/2\)) and \(m = n - k\), and partition \(Z_n\) and \(x_n\) conformally thus:

\[
Z_n = \begin{pmatrix} P & Q \\ O & R \end{pmatrix}_k \quad x_n = \begin{pmatrix} q \\ r \end{pmatrix}_k
\]

where \(P\) is \(m \times m\) upper-triangular with real diagonal, and \(R\) is \(k \times k\) upper-triangular with real diagonal. We may now estimate

\[
\|Q\| = \left\| \begin{pmatrix} 0 & Q \\ 0 & 0 \end{pmatrix} \right\| \leq \left\| \begin{pmatrix} P^* + P & Q \\ Q^* & R^* + R \end{pmatrix} \right\| = \|Z_n^* + Z_n\| = 1,
\]

and similarly \(\|P^* + P\| \leq 1\) and \(\|R^* + R\| \leq 1\), whence it follows that \(\|P - P^*\| \leq \beta_m\) and \(\|R - R^*\| \leq \beta_k\). And since \(\|q\|^2 + \|r\|^2 = \|x_n\|^2 = 1\),

\[
\beta_n = \nu x_n^*(Z_n - Z_n^*)x_n
\]

\[
= \nu q^*(P - P^*)q + q^*Qr - r^*Q^*q + r^*(R - R^*)r
\]

\[
\leq \beta_m \|q\|^2 + 2\|q\| \cdot \|r\| + \beta_k \|r\|^2
\]

\[
\leq \left\| \begin{pmatrix} \beta_m & 1 \\ 1 & \beta_k \end{pmatrix} \right\| = (\beta_m + \beta_k)/2 + (1 + (\beta_m - \beta_k)^2/4)^{1/2}.
\]

We must now exploit the properties of the function \(\|(\xi \, \eta)\|\); e.g. it is a monotonic increasing function of \(\xi\) and \(\eta\) for all real \(\xi\) and \(\eta\) with \(\xi + \eta > 0\). Therefore an argument by induction proves that \(\beta_n \leq \mu_n\) for all \(n\) where the sequence \({\mu_n}\) is defined recursively thus:

\[
\mu_1 \equiv 0, \quad \mu_2 \equiv 1, \quad \mu_{2n} \equiv \mu_n + 1,
\]

\[
\mu_{2n+1} \equiv \left\| \begin{pmatrix} \mu_n+1 \\ 1 \end{pmatrix} \right\| = (\mu_{n+1} + \mu_n)/2 + (1 + (\mu_{n+1} - \mu_n)^2/4)^{1/2}.
\]
Another argument by induction proves that the sequence \((\mu_n) \) is monotonic; \(\mu_{2n} < \mu_{2n+1} < \mu_{2n+2} \). What remains to be proved is that \(\mu_n < \log_2 n + 0.038 \).

In fact more is true. To any positive integer \(n \) correspond integers \(i \) and \(j \) defined uniquely by \(2^i \leq n = 2^i + j < 2^{i+1} \), so \(0 \leq 2^{-i}j < 1 \); it turns out that

\[
\log_2 n = i + \log_2(1 + 2^{-i}j) \\
\leq \mu_n \leq i + \log(1 + (e - 1)2^{-i}j) < \log_2 n + 0.038. \tag{1}
\]

The first of these inequalities will not be proved here (it is presented only to show how closely \(\mu_n \) approximates \(\log_2 n \)); and the last inequality is a consequence of the elementary observation that the function \(\log(1 + (e - 1)\xi) - \log_2(1 + \xi) \) is positive for \(0 < \xi < 1 \) and takes its maximum value there when \(\xi = (\log 2 - 1/(e - 1))/(1 - \log 2) \), and that maximum value is about 0.0379 \(\cdots \). The nontrivial inequality is the middle one, and it will be deduced from the following elementary inequality:

Lemma 0. \(1/\log(1 + \xi) + 1/\log(1 - \xi) > 1 \) whenever \(0 < \xi < 1 \).

Proof. Define \(\phi_1(\xi) \equiv -\log(1 - \xi) - \log(1 + \xi) = -\log(1 - \xi^2) > 0 \) for \(0 < \xi < 1 \). Then in turn

\[
\phi_2(\xi) \equiv \int_0^\xi \phi_1(\eta) \, d\eta = (1 - \xi)\log(1 - \xi) - (1 + \xi)\log(1 + \xi) + 2\xi > 0;
\]

\[
\phi_3(\xi) \equiv \phi_2(\xi)/(1 - \xi^2) = \frac{\log(1 - \xi)}{1 + \xi} - \frac{\log(1 + \xi)}{1 - \xi} - \frac{1}{1 + \xi} + \frac{1}{1 - \xi} > 0;
\]

\[
\phi_4(\xi) \equiv \int_0^\xi \phi_3(\eta) \, d\eta = \log(1 + \xi)\log(1 - \xi) - \log(1 + \xi) - \log(1 - \xi) > 0;
\]

\[
\frac{1}{\log(1 + \xi)} + \frac{1}{\log(1 - \xi)} - 1 = \frac{\phi_4(\xi)}{-\log(1 - \xi)\log(1 + \xi)} > 0 \quad \text{as claimed.}
\]

Now for some serious work. We begin with the induction hypothesis that

\[
\mu_n \leq i + \log(1 + (e - 1)2^{-i}j),
\]

where \(i \) and \(j \) are derived from \(n \) as described above, for each \(n=1, 2, \cdots, 2^m-1, 2^m \) and some \(m \geq 1 \). The hypothesis is obviously true for \(m=1 \). Since \(2n \) corresponds respectively to \(i+1 \) and \(2j \) (i.e. \(2n=2^{i+1}+2j \)), and \(\mu_{2n} = \mu_n + 1 \leq i+1 + \log(1 + (e - 1)2^{i+1-1}(2j)) \), we see how the induction hypothesis is conveyed from \(n \) to \(2n \) and hence to all the even integers \(2n=n=2^m+2, 2^m+4, \cdots, 2^m+1 \). As for the odd integers \(2n+1 \), we observe that \(n+1 \) corresponds either to \(i \) and \(j+1 \) (i.e. \(n+1=2^i+j+1 \)) or to \(i+1 \) and \(0 \) (i.e. \(n+1=2^i+1 \)), so in either case, provided

\(^1\) The referee claims that the inequality \(\mu_n < \log_2 n + 1 \) is trivial.
\(n + 1 \leq 2^m, \)

\[
\mu_{2n+1} = \left\| \begin{pmatrix} \mu_{n+1} & 1 \\ \ast & \mu_n \end{pmatrix} \right\|
\]

\[
\leq \left\| \begin{pmatrix} i + \log(1 + (e - 1)2^{-i}(j + 1)) & -1 \\ -1 & i + \log(1 + (e - 1)2^{-i}(j + 1)) \end{pmatrix} \right\|;
\]

and we wish to show that the last expression is less than

\[i + 1 + \log(1 + (e - 1)2^{-i}(2j + 1)). \]

But that is soon seen to be tantamount to showing

\[
\left\| \begin{pmatrix} 1 + \log(1 + (e - 1)2^{-i}(2j + 1)) \\ -\log(1 + (e - 1)2^{-i}(j + 1)) \end{pmatrix} \right\| > 0
\]

and this is tantamount to showing for \(\xi \equiv 1/(2j + 1 + 2^{i+1}/(e-1)) \) that the inequality of Lemma 0 is true. The proof of the title's inequality is soon completed.

1. An example \(Z \). We shall exhibit an \(n \times n \) matrix \(Z \), with real spectrum, which satisfies

\[
\|Z - Z^*\|/\|Z + Z^*\| > (2/\pi)(\log n + 1 - \frac{1}{2}\log 2 + 1/2n);
\]

since \((2/\pi)\log n \approx 0.92 \log_2 n \) we must conclude that the title's inequality, \(\|Z - Z^*\|/\|Z + Z^*\| < \log_2 n + 0.038 \), cannot be improved by more than about 8% when \(n \) is large.

The example is

\[
Z \equiv i \begin{pmatrix} 0 & 1 & \frac{1}{2} & \cdots & \cdots & 1/(n - 1) \\
0 & 1 & \frac{1}{2} & \cdots & \cdots & \\
0 & 1 & \frac{1}{2} & \cdots & \cdots & \\
& \cdots & \cdots & \cdots & \cdots & \\
0 & 1 & \cdots & \cdots & \cdots & \\
0 & \cdots & \cdots & \cdots & \cdots & \end{pmatrix}_{n \times n}
\]

i.e.

\[
z_{ij} \equiv 0 \quad \text{if } i \geq j,
\]

\[
\equiv i/(j - i) \quad \text{if } i < j.
\]

Our object is to obtain estimates \(\|Z + Z^*\| < \pi \) and \(\|Z - Z^*\| > 2\log n + \frac{1}{2} - \log 2 + 1/n \).

The matrix \(Z + Z^* \) is the \(n \times n \) Toeplitz matrix belonging to the function
\(\phi(\theta) \equiv \pi - \theta \) on \(0 < \theta < 2\pi \) in so far as to any \(n \)-vector \(x \) with components \(\xi_0, \xi_1, \ldots, \xi_{n-1} \) correspond the quadratic forms

\[
x^* (Z + Z^*) x = \frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{\ell=0}^{n-1} \xi_\ell e^{i\ell \theta} \right|^2 d\theta,
\]

\[
x^* x = \frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{\ell=0}^{n-1} \xi_\ell e^{i\ell \theta} \right|^2 d\theta.
\]

Evidently \(-\pi < Z + Z^* < \pi\), so \(\| Z + Z^* \| < \pi \). Moreover, the constant \(\pi \) in the last inequality cannot be replaced by any smaller constant for all \(n \) without contradicting theorems in Grenander and Szegö [1958, pp. 19, 64].

The matrix \(\iota(Z^* - Z) \) is another Toeplitz matrix, this time belonging to

\[
\psi(\theta) \equiv -2 \log(2 \sin \frac{\theta}{2}) = 2 \sum_{n=1}^{\infty} \frac{\cos n\theta}{n},
\]

but the fact that \(\psi(\theta) \to \infty \) as \(\theta \to 0 \) places that matrix out of reach of the theory in Grenander and Szegö [1958, pp. 72-75], so we shall resort to elementary methods. Specifically, we invoke the fact that

\[
\| Z^* - Z \| = \max_{x \neq 0} | x^* (Z^* - Z) x / \| x \|^2 |
\]

and consider a trial vector \(x \) with all components equal. Thus we find

\[
\| Z^* - Z \| \geq \frac{1}{n} \sum_{i \leq \ell \leq n} \frac{1}{|i - j|} \quad \text{(over } 1 \leq i \leq n, 1 \leq j \leq n \text{ and } i \neq j) \]

\[
= 2\left(\frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots + \frac{1}{(n - 1)} + \frac{1}{n} \right) \\
= 2\left(\frac{1}{4} \cdot \frac{1}{2} + \frac{1}{6} + \frac{1}{8} + \cdots + \frac{1}{(n - 1)} + \frac{1}{2n} \right) + \frac{1}{2} + \frac{1}{n} \\
\geq 2 \int_2^n d\xi / \xi + \frac{1}{2} + \frac{1}{n} \quad \text{(cf. trapezoidal rule)} \\
= 2(\log n - \log 2 + \frac{1}{2} + 1/2n), \quad \text{as claimed.}
\]

This inequality cannot much overestimate \(\| Z^* - Z \| \) when \(n \) is large since

\[
\| Z^* - Z \| \leq \text{largest row-sum of magnitudes of elements of } \iota(Z^* - Z) \\
= (1 + \frac{1}{L} + \cdots + 1/L(n-1)/2J) + (1 + \frac{1}{L} + \cdots + 1/Ln/2J) \\
\leq \int_{1/2}^{L(n-1)/2L+1/2} d\xi / \xi + \int_{1/2}^{L(n/2J+1/2} d\xi / \xi \quad \text{(cf. midpoint rule)} \\
\leq 2 \log n.
\]

Thus we conclude \(\| Z - Z^* \| / (\| Z + Z^* \| \log n) \) approaches \(2/\pi \) from below as \(n \to \infty \), so the title's inequality overestimates \(\| Z - Z^* \| / \| Z + Z^* \| \) by about 8% when \(n \) is very large.
Can this example be improved to provide a larger limit for
$$\|Z - Z^*\|/(\|Z + Z^*\| \log n)$$
as $n \to \infty$? Can the title’s inequality be improved to provide a smaller bound for that quotient?

The title’s inequality is very much an artifact of the chosen norm. A different norm, say $\|B\|_2 \equiv (\text{trace}(B^*B))^{1/2}$, would lead to a different result:

Every $n \times n$ matrix Z with real spectrum satisfies $\|Z - Z^*\|_2 \leq \|Z + Z^*\|_2$. The proof is immediate after Z has been transformed to an upper triangle by a unitary similarity, and shows that the inequality becomes equality just when Z is nilpotent.

2. The shape of Z’s numerical range when its spectrum is real. Z’s numerical range $\mathcal{N}(Z)$ is the set of all complex numbers $\xi + i\eta = v^*Zv/v^*v$ obtained as v runs through all nonzero n-vectors. The Toeplitz-Hausdorff theorem, for which C. Davis [1971] has recently provided a brief proof, asserts that $\mathcal{N}(Z)$ is a convex set containing Z’s spectrum. When Z’s spectrum is real, how different can the shape of $\mathcal{N}(Z)$ be from that of a horizontal line segment?

Let us denote the height and width of $\mathcal{N}(Z)$ by
$$\mathcal{H}(Z) \equiv \max_{\xi + i\eta \in \mathcal{N}(Z)} \eta - \min_{\xi + i\eta \in \mathcal{N}(Z)} \eta$$
and
$$\mathcal{W}(Z) \equiv \max_{\xi + i\eta \in \mathcal{N}(Z)} \xi - \min_{\xi + i\eta \in \mathcal{N}(Z)} \xi.$$

We claim that every $n \times n$ matrix Z with real spectrum satisfies
$$\mathcal{H}(Z) \leq \mathcal{W}(Z)(\log_2 n + 0.038).$$

First observe that $\mathcal{N}(Z - \alpha) = \mathcal{N}(Z) - \alpha$, $\mathcal{H}(Z - \alpha) = \mathcal{H}(Z)$ and $\mathcal{W}(Z - \alpha) = \mathcal{W}(Z)$ for every scalar α and, in particular, for every real scalar α. Therefore we lose no generality by setting
$$\alpha \equiv \frac{1}{2} \left(\max_{\xi + i\eta \in \mathcal{N}(Z)} \xi + \min_{\xi + i\eta \in \mathcal{N}(Z)} \xi \right)$$
and considering $Z - \alpha$ in place of Z, i.e. assume $\alpha = 0$. Then
$$\max_{\xi + i\eta \in \mathcal{N}(Z)} \xi = -\min_{\xi + i\eta \in \mathcal{N}(Z)} \xi = \max_{v \neq 0} \frac{|v^*(Z + Z^*)v|}{2v^*v} = \frac{1}{2} \|Z + Z^*\|,$$
so $\mathcal{W}(Z) = \|Z + Z^*\|$. On the other hand, a similar calculation shows $\mathcal{H}(Z) \leq \|Z - Z^*\|$. Consequently the title’s inequality proves the claim.
Does that claim always grossly overestimate \(\mathcal{H}(Z)/\mathcal{W}(Z) \)? No. Consider for example a \(2n \times 2n \) matrix \(Z \) which is the diagonal sum of the previous section's example and its conjugate transpose; for this new example \(\mathcal{H}(Z)/(\mathcal{W}(Z) \log n) \to 2/\pi \) as \(n \to \infty \).

ACKNOWLEDGEMENTS. This work was supported in part by a grant from the U.S. Office of Naval Research, contract no. N00014-69-A-0200-1017. The results were first presented at the Fifth Gatlinburg Symposium on Numerical Linear Algebra held at Los Alamos on June 5–10, 1972. I am indebted to T. Kato and A. McIntosh for a prepublication view of the latter’s results.

REFERENCES

Computer Science Department, University of California, Berkeley, California 94720