INDECOMPOSABLE CONTINUA IN STONE-ČECH COMPACTIFICATIONS

DAVID P. BELLAMY AND LEONARD R. RUBIN

Abstract. We show that if Y is a continuum irreducible from a to b, which is connected im Kleinen and first countable at b, and if $X = Y - \{b\}$, then $\beta X - X$ is an indecomposable continuum. Examples are given showing that both first countability and connectedness im Kleinen are needed here. We also show that $\beta(0, 1) - \{0, 1\}$ has a strong near-homogeneity property.

1. Introduction. In [2] and [3] it is shown that if $X = [0, 1)$ then $\beta X - X$ is an indecomposable continuum; here βX is the Stone-Čech compactification of X. In [7], Dickman showed that among locally connected spaces, $[0, 1)$ is essentially the only such space. In this paper we exhibit other types of spaces X with this property. We shall also show that for $X = [0, 1)$, $\beta X - X$ is stably almost homogeneous, a concept to be defined below.

The set function T has been studied and applied in [1], [5], [6], [8], [9], [11], and [14]. We follow these papers in writing $T(p)$ for $T(\{p\})$. This set function will be used in the argument at one point and familiarity with it is assumed. Familiarity with [10], [12], [13], and [15] is also assumed. If we write $X = A \cup B$ sep, then we mean that $\text{Cl}(A) \cap B = \emptyset$ and $A \cap \text{Cl}(B) = \emptyset$ while neither A nor B is empty. By $f : X \rightarrow Y$, we mean f is a homeomorphism of X onto Y.

2. Indecomposable continua in βX.

Lemma 1. There is a covariant functor β on the category of Tychonoff spaces and continuous maps such that for any Tychonoff space X, βX is the Stone-Čech compactification of X and if $f : X \rightarrow Y$ then $\beta f : \beta X \rightarrow \beta Y$ is the unique extension of f induced by f treated as a map from X to βY.

Notation. If X is a Tychonoff space, let $\gamma X = \beta X - X$. If f is a continuous map from X to Y, let γf denote $\beta f | \gamma X$.

Definition. Let Y be a compact Hausdorff continuum irreducible from a to b such that Y is both connected im Kleinen and first countable

Received by the editors November, 1971 and, in revised form, September 8, 1972.

Key words and phrases. Remainders of compactifications.

© American Mathematical Society 1973
at \(b \). Let \(X = Y - \{ b \} \). Then we call the topological pair \((Y, X)\) a wave from \(a \) to \(b \).

By stringing together indecomposable continua, a wave \((Y, X)\) can be constructed such that \(Y \) is not connected im Kleinen at any point of \(X \).

Lemma 2. If \(Y \) is a compact Hausdorff continuum irreducible from \(a \) to \(b \) and \(x \in Y \), \(T(x) \) either separates \(a \) from \(b \), contains \(a \), or contains \(b \). In case \(T(x) \) separates \(a \) from \(b \), \(Y - T(x) \) has exactly two components, \(A \) and \(B \), where \(a \in A \) and \(b \in B \), and both \(T(x) \cup A \) and \(T(x) \cup B \) are proper subcontinua of \(Y \) containing \(a \) and \(b \) respectively.

Remark on proof. This lemma can be established using standard techniques and Theorem 1.10 of [14], since each \(x \in Y \) different from \(a \) and \(b \) weakly separates \(a \) from \(b \).

Lemma 3. If \(Y \) is a compact Hausdorff continuum irreducible from \(a \) to \(b \) and \(W \subseteq Y \) is a continuum with \(b \in \text{Int } W \), then \(W - \{ b \} \) is connected.

Proof. If \(W - \{ b \} = M_0 \cup N_0 \), let \(M = M_0 \cup \{ b \} \); \(N = N_0 \cup \{ b \} \). Then \(b \) lies in the boundary of \(M \) and \(N \) and, by Theorem 6 of [15, p. 194], each of \(M \) and \(N \) is nowhere dense, so that \(M \cup N = W \) is nowhere dense also, a contradiction.

Lemma 4. If \((Y, X)\) is a wave from \(a \) to \(b \), and \(Z \) is a Hausdorff compactification of \(X \), then \(Z - X \) is a Hausdorff continuum.

Proof. Since \(Y \) is connected im Kleinen and first countable at \(b \), there exists a denumerable collection of continua \(\{ N_i \}_{i=1}^{\infty} \) such that for each \(i \), \(b \in \text{Int } (N_i) \) and \(N_{i+1} \subseteq N_i \) and \(\bigcap_{i=1}^{\infty} N_i = \{ b \} \). It is readily seen that

\[
Z - X = \text{Cl}_Z (N_i - \{ b \}) - N_i = \bigcap_{i=1}^{\infty} \text{Cl}_Z (N_i - \{ b \}).
\]

Then, since each \(N_i - \{ b \} \) is connected by Lemma 3, \(Z - X \) is an intersection of a monotone collection of continua.

Lemma 5. Let \(X \) be a compact Hausdorff space, \(b \in X \), \(\{ b \} \) a component of \(X \), and suppose \(X \) is first countable at \(b \) and \(\{ b_i \}_{i=1}^{\infty} \) is a sequence in \(X - \{ b \} \) converging to \(b \). Then there exist two closed subsets \(A \) and \(B \) of \(X \) such that \(A \cup B = X \), \(A \cap B = \{ b \} \), and each of \(A \) and \(B \) contains infinitely many (that is, a subsequence) of the \(b_i \)'s.

Proof. It is readily seen that there exists a neighborhood basis \(\{ N_i \}_{i=1}^{\infty} \) at \(b \) consisting of closed and open sets such that \(N_{j+1} \subseteq N_j \) for each \(j \) and \(N_1 = X \); by passing to a subset if necessary, we may suppose that each
$N_j - N_{j+1}$ contains at least one of the b_i's. Then set

$$A = \{b\} \cup \bigcup_{j=1}^{\infty} (N_{2j-1} - N_{2j}), \quad B = \{b\} \cup \bigcup_{j=1}^{\infty} (N_{2j} - N_{2j+1}).$$

Then A and B have the desired properties.

Lemma 6. If (Y, X) is a wave from a to b and W is a nondegenerate subcontinuum of Y containing b, then $b \in \text{Int } W$.

Proof. Suppose not. Then let $p \in W$, $p \neq b$. Since $b \notin T(p)$, by connectedness im Kleinen at b, it follows that either $a \in T(p)$ or $Y - T(p) = A \cup B$ sep, where $a \in A$ and $b \in B$. If $a \in T(p)$, $T(p) \cup W$ is a proper subcontinuum of Y containing both a and b; if $a \notin T(p)$, $A \cup T(p) \cup W$ is such a continuum, and in either case we have a contradiction.

Corollary 1. If (Y, X) is a wave from a to b and M is a closed subset of Y with $b \in M$ but $b \notin \text{Int } M$, $\{b\}$ is a component of M.

Lemma 7. If Y is a compact Hausdorff space first countable at a point b, then $Y - \{b\}$ is normal.

Proof. Let $\{O_k\}_{k=1}^{\infty}$ be a countable basis of open neighborhoods at b. Then $Y - \{b\} = \bigcup_{k=1}^{\infty} (Y - O_k)$, so that $Y - \{b\}$ is sigma compact and hence Lindelöf. Then $Y - \{b\}$ is paracompact [10, p. 174, 6.5] and hence normal [10, p. 163, 2.2].

Theorem 1. If (Y, X) is a wave from a to b, then yX is an indecomposable continuum.

Proof. By Lemma 4, yX is a continuum. Suppose F is a proper subcontinuum of yX which contains an interior point q with respect to yX. Let $p \in y(X) - F$. Let U and V be open sets in yX with $\text{Cl}(U) \cap \text{Cl}(V) = \text{Cl}(U) \cap (yX - \text{Int } F) = \text{Cl}(V) \cap F = \emptyset$ while $p \in V$ and $q \in U$. This is possible by regularity.

Then $X \cap V$ and $X \cap U$ are open subsets of X and hence of Y since X is open in Y. Let $\langle b_i \rangle_{i=1}^{\infty}$ be a sequence of points in $U \cap X$ converging in Y to b. This is possible since $b \in \text{Cl}_Y(U \cap X)$ and Y is first countable at b.

Then $\{b\}$ is a component of $Y - (V \cap X)$, by Corollary 1, and $\langle b_i \rangle$ is a sequence in $(Y - V) - \{b\}$ converging to b. By Lemma 6 there are two closed sets A_0 and B_0 such that $A_0 \cup B_0 = Y - V$, $A_0 \cap B_0 = \{b\}$, and each of A_0 and B_0 contains a subsequence of the b_i's. Let $A = A_0 \cap X$, $B = B_0 \cap X$. Then A and B are disjoint closed subsets of X, and since X is normal, disjoint closed sets lie in disjoint zero sets, and by Theorem 6.5 III of [12], $\text{Cl}_X(A) \cap \text{Cl}_X(B) = \emptyset$. Now since each of A and B contains infinitely many of the b_i's, it follows that each of $\text{Cl}_X(A)$ and $\text{Cl}_X(B)$ contains
points of $\text{Cl}_{\beta X}(U) \cap \gamma X$, and hence points of F. Thus, since if $x \in \gamma X - \text{Cl}_{\beta X}(A \cup B)$, it follows that $x \in \text{Cl}_{\beta X}(V)$ and hence $x \notin F$, we have $F = (F \cap \text{Cl}_{\beta X}(A)) \cup (F \cap \text{Cl}_{\beta X}(B)) \text{ sep}$, so that F is no continuum.

Corollary 2 ([2] and [3]). Let $X = [0, 1)$. Then γX is an indecomposable continuum.

Example 1. Let L denote the long line, consisting of $\omega_1 \times [0, 1)$ with the lexicographic order, where ω_1 is the first uncountable ordinal; we take the order topology on L. Then consider $L \times [0, 1]$ with the product topology. Let

$$X = \{((x, t), s) \in L \times [0, 1]: t = 0 \text{ or } t = s\}.$$

Let $Y = X \cup \{b\}$ be the one-point compactification of X. Then Y is irreducible from $((0, 0), 1)$ to b and is connected im Kleinen at b. (Y, X) fails to be a wave from a to b because Y is not first countable at b.

Standard techniques applied to continuous functions from ω_1 to $[0, 1]$ yield the result that $\gamma X \cong [0, 1]$ in this case. Thus, first countability cannot be dispensed with in the hypothesis of Theorem 1. Connectedness im Kleinen also cannot be removed from the hypothesis of Theorem 1; the usual topologist's sin $1/x$ curve, with b taken from the limit arc, yields a decomposable continuum as γX.

Lemma 8. If X is a Tychonoff space and Z is any compactification of X with inclusion map $i: X \rightarrow Z$, then $\gamma i(\gamma X) = Z - i(X)$.

Remark on proof. This is a special case of Theorem 6.12 of [12, p. 92].

Lemma 9. If X and Y are Tychonoff spaces and $f: X \rightarrow Y$, then $\gamma f : \gamma X \rightarrow \gamma Y$.

Proof. By Lemma 8, $\gamma f(\gamma X) = \gamma Y$ and since β is a functor it follows that βf is a homeomorphism since it has inverse $\beta(f^{-1})$. Then γf is a homeomorphism since it is a restriction of one.

Lemma 10. Let X be a normal Hausdorff space and A a closed subset of X such that $X - A$ contains a closed but not compact subset of X. Then $\gamma X - \text{Cl}_{\beta X}(A)$ is a nonempty, open subset of γX.

Lemma 11. Suppose X is a Tychonoff space and $f: X \cong X$ is the identity inside some closed subset V of X. Then $\gamma f: \gamma X \cong \gamma X$ is the identity inside $\gamma X \cap \text{Cl}_{\beta X}(V)$.

Definition. We say a topological space X is **almost homogeneous** if for any $p, q \in X$, and any neighborhood U of q there is a homeomorphism $h: X \cong X$ such that $h(p) \in U$. If, in addition, we may choose h to be the
identity on some nonempty open subset of X, we say X is stably almost homogeneous.

Theorem 2. Let $X = [0, 1)$; then γX is a stably almost homogeneous indecomposable continuum.

Proof. Throughout this proof, Cl denotes $\text{Cl}_\beta X$. Let $x, y \in \gamma X$ and let V_0 be any open set in γX containing y. Then $V_0 = V_1 \cap \gamma X$ for some V_1 open in βX. Then there exists a V_2 open in βX such that $y \in V_2 \subseteq \text{Cl} V_2 \subseteq V_1$ and $x \notin \text{Cl} V_2$ unless $x = y$, in which case there is nothing to prove. Let U_0 be open in βX with $x \in U_0$ and $\text{Cl} U_0 \cap \text{Cl} V_2 = \emptyset$. Now let $U = U_0 \cap X$ and $V = V_2 \cap X$. We shall assume, with no loss of generality, that $0 < \inf U < \inf V$.

Now, define four sequences $(p_n)_{n=1}^{\infty}$, $(q_n)_{n=1}^{\infty}$, $(r_n)_{n=1}^{\infty}$, and $(s_n)_{n=1}^{\infty}$ as follows: $p_1 = \inf U$. Whenever p_i has been defined, set $q_i = \sup \{t \in U : [p_i, t] \cap V = \emptyset \}$. When q_i has been defined, set $r_i = \inf \{t \in V : t > q_i \}$. When r_i has been defined, set $s_i = \sup \{t \in V : r_i \cap U = \emptyset \}$. When s_i has been defined, set $p_{i+1} = \inf \{t \in U : t > s_i \}$. This completes the recursive definition of the four sequences. They have the following properties: $p_i < q_i < r_i < s_i < p_{i+1}$ for each i; the limit in $[0, 1]$ of each sequence is 1, $U \subseteq \bigcup_{i=1}^{\infty} [p_i, q_i]$, and $V \subseteq \bigcup_{i=1}^{\infty} [r_i, s_i]$. We now choose two more sequences $(x_i)_{i=1}^{\infty}$ and $(y_i)_{i=1}^{\infty}$ so that, for each i, $r_i < x_i < y_i < s_i$ and the closed interval $[x_i, y_i]$ is a subset of V. Finally we choose two more sequences $(a_i)_{i=1}^{\infty}$ and $(b_i)_{i=1}^{\infty}$ such that $a_1 = 0$; $0 < b_1 < p_1$, and for $i > 1$ we choose $s_i < a_{i+1} < b_{i+1} < p_{i+1}$. Now define $h : X \rightarrow X$ as follows: For each i,

1. h is the identity on $[a_i, b_i]$,
2. h maps the interval $[b_i, p_i]$ linearly onto $[b_i, x_i]$,
3. h maps $[p_i, q_i]$ linearly onto $[x_i, y_i]$,
4. h maps $[q_i, a_{i+1}]$ linearly onto $[y_i, a_{i+1}]$.

Then $h(U) \subseteq V$, and hence $\beta h(\text{Cl}(U)) \subseteq \text{Cl}(V)$, and since $x \in \text{Cl}(U)$, $\beta h(x) \in \text{Cl}(V) \subseteq \text{Cl}(V_2) \subseteq V_1$, and $\beta h(x) = \gamma h(x) \in V_0$ as desired. Furthermore, γh is the identity inside the set $\gamma X \cap \text{Cl}(\bigcup_{i=1}^{\infty} [a_i, b_i])$, which contains a nonvoid open subset of γX by Lemma 10, setting the closed set $\bigcup_{i=1}^{\infty} [b_i, a_{i+1}]$ equal to A in the lemma.

References

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Department of Mathematics, University of Delaware, Newark, Delaware 19711

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069