Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Indecomposable continua in Stone-Čech compactifications


Authors: David P. Bellamy and Leonard R. Rubin
Journal: Proc. Amer. Math. Soc. 39 (1973), 427-432
MSC: Primary 54D35; Secondary 54F20
DOI: https://doi.org/10.1090/S0002-9939-1973-0315670-X
MathSciNet review: 0315670
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ Y$ is a continuum irreducible from $ a$ to $ b$, which is connected im Kleinen and first countable at $ b$, and if $ X = Y - \{ b\} $, then $ \beta X - X$ is an indecomposable continuum. Examples are given showing that both first countability and connectedness im Kleinen are needed here. We also show that $ \beta [0,1) - [0,1)$ has a strong near-homogeneity property.


References [Enhancements On Off] (What's this?)

  • [1] D. P. Bellamy, Continua for which the set function $ T$ is continuous, Trans. Amer. Math. Soc. 151 (1970), 581-587. MR 42 #6791. MR 0271910 (42:6791)
  • [2] -, A non-metric indecomposable continuum, Duke Math. J. 38 (1971), 15-20. MR 42 #6792. MR 0271911 (42:6792)
  • [3] -, Topological properties of compactifications of a half-open interval, Ph.D. Thesis, Michigan State University, East Lansing, Mich., 1968.
  • [4] H. S. Davis, A note on connectedness im Kleinen, Proc. Amer. Math. Soc. 19 (1968), 1237-1241. MR 40 #8021. MR 0254814 (40:8021)
  • [5] H. S. Davis, D. P. Stadtlander and P. M. Swingle, Properties of the set functions $ {T^n}$, Portugal. Math. 21 (1962), 113-133. MR 25 #5501. MR 0142108 (25:5501)
  • [6] -, Semigroups, continua, and the set functions $ {T^n}$, Duke Math. J. 29 (1962), 265-280. MR 26 #4325. MR 0146805 (26:4325)
  • [7] R. F. Dickman, Jr., A necessary and sufficient condition for $ \beta X - X$ to be an indecomposable continuum, Proc. Amer. Math. Soc. 33 (1972), 191-194. MR 0295296 (45:4364)
  • [8] R. F. Dickman, Jr., L. R. Rubin and P. M. Swingle, Characterization of $ n$-spheres by an excluded middle membrane principle, Michigan Math. J. 11 (1964), 53-59. MR 28 #4523. MR 0161315 (28:4523)
  • [9] -, Irreducible continua and generalization of hereditarily unicoherent continua by means of membranes, J. Austral. Math. Soc. 5 (1965), 416-426. MR 32 #6424. MR 0188997 (32:6424)
  • [10] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [11] R. W. Fitzgerald and P. M. Swingle, Core decompositions of continua, Fund. Math. 61 (1967), 33-50. MR 36 #7110. MR 0224063 (36:7110)
  • [12] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [13] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [14] R. P. Hunter, On the semigroup structure of continua, Trans. Amer. Math. Soc. 93 (1959), 356-368. MR 22 #82. MR 0109194 (22:82)
  • [15] K. Kuratowski, Topologie. Vol. 2, 3rd ed., Monografie Mat., Tom 21, PWN, Warsaw, 1961; English transl., Academic Press, New York; PWN, Warsaw, 1968. MR 24 #A2958; MR 41 #4467. MR 0259835 (41:4467)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35, 54F20

Retrieve articles in all journals with MSC: 54D35, 54F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315670-X
Keywords: Remainders of compactifications
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society