Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some relations between semigroups of polyhedra


Author: Ilan Kozma
Journal: Proc. Amer. Math. Soc. 39 (1973), 388-394
MSC: Primary 55D10
DOI: https://doi.org/10.1090/S0002-9939-1973-0315702-9
MathSciNet review: 0315702
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All spaces are CW-complexes of finite type. The notation ``='' means homotopy equivalence. The following theorems are proved:

(1) If $ X \vee A = Y \vee A$ then there exists $ T$ such that $ \Omega X \times T = \Omega Y \times T$,

(2) $ X \times A = Y \times A$ implies that there is a $ T$ such that $ \Sigma X \vee T = \Sigma Y \vee T$.

A partial converse is also proved. As a corollary we get that if $ X \vee A = Y \vee A$ then $ {\pi _ \ast }(X) = {\pi _ \ast }(Y)$ and if $ X \times A = Y \times A$ then $ {h_ \ast }(X) = {h_ \ast }(Y)$ for many homology theories.


References [Enhancements On Off] (What's this?)

  • [1] J. Cohen, Stable homotopy, Lecture Notes in Math., vol. 165, Springer-Verlag, Berlin and New York, 1970. MR 42 #8486. MR 0273608 (42:8486)
  • [2] P. Freyd, Stable homotopy, Proc. Conference on Categorical Algebra (La Jolla, Calif., 1965), Springer-Verlag, New York, 1966, pp. 121-172. MR 35 #2280. MR 0211399 (35:2280)
  • [3] -, The Grothendieck group for stable homotopy is free, Bull. Amer. Math. Soc. 73 (1967), 84-86. MR 34 #5086. MR 0205253 (34:5086)
  • [4] P. J. Hilton, On the homotopy type of compact polyhedra, Fund. Math. 61 (1967), 105-109. MR 37 #3556. MR 0227972 (37:3556)
  • [5] -, Some remarks concerning the semi-ring of polyhedra, Bull. Soc. Math. Belg. 19 (1967), 277-288. MR 37 #3558. MR 0227974 (37:3558)
  • [6] -, Homotopy theory and duality, Gordon and Breach, New York, 1965. MR 33 #6624. MR 0198466 (33:6624)
  • [7] P. J. Hilton and J. Roitberg, On principal $ {S^3}$ bundles over spheres, Ann. of Math. (2) 90 (1969), 91-107. MR 39 #7624. MR 0246320 (39:7624)
  • [8] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110. MR 12, 43. MR 0035997 (12:43c)
  • [9] J. Milnor, On the construction FK, Algebraic-Topology, J. F. Adams (Editor), Cambridge Univ. Press, New York, 1972.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55D10

Retrieve articles in all journals with MSC: 55D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315702-9
Keywords: Noncancellation, suspension, one point union, loop spaces, product, homotopy groups, homology groups
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society