Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dirichlet problems for singular elliptic equations


Author: Chi Yeung Lo
Journal: Proc. Amer. Math. Soc. 39 (1973), 337-342
MSC: Primary 35J70
DOI: https://doi.org/10.1090/S0002-9939-1973-0316895-X
MathSciNet review: 0316895
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Boundary value problems are formulated for the equation

$\displaystyle ( \ast )\quad L[u] = \sum\limits_{i,j = 1}^n {{a_{ij}}\frac{{{\pa... ...tial {x_i}}}} + \frac{h}{{{x_n}}}\frac{{\partial u}}{{\partial {x_n}}} + cu = f$

in a bounded domain $ G$ in $ {E_n}$ with boundary $ \partial G = {S_1} \cup {S_2}$ where $ {S_1}$ is in $ {x_n} = 0$ and $ {S_2}$ is in $ {x_n} > 0$. A uniqueness theorem is established for $ ( \ast )$ when boundary data is only given on $ {S_2}$ for

$\displaystyle h({x_1}, \cdots ,{x_{n - 1}},0) \geqq 1;$

; whereas an existence and uniqueness theorem for the Dirichlet problem is proved for $ h({x_1},{x_2}, \cdots ,{x_{n - 1}},0) < 1$.

References [Enhancements On Off] (What's this?)

  • [1] P. Brousse and H. Poncin, Quelques résultats generaux concernant la détermination de solutions d'équations elliptiques par les conditions aux frontières, Mémoires sur la mécanique des fluides offerts à M. Dimitri P. Riabouchinsky, Publ. Sci. Tech. Ministère de l'Air, Paris, 1954. MR 16, 368.
  • [2] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differential gleichungen vom elliptischen Typus, S.-B. Preuss. Akad. Wiss. 19 (1927), 147-152.
  • [3] A. Huber, On the uniqueness of generalized axially symmetric potentials, Ann. of Math. (2) 60 (1954), 351-358. MR 16, 258. MR 0064284 (16:258f)
  • [4] -, Some results on generalized axially symmetric potentials, Proc. Conference on Differential Equations, Univ. of Maryland, College Park, Md., 1956, pp. 147-155. MR 18, 650. MR 0083050 (18:650d)
  • [5] M. Schechter, On the Dirichlet problem for second order elliptic equations with coefficients singular at the boundary, Comm. Pure Appl. Math. 13 (1960), 321-328. MR 22 #3872. MR 0113031 (22:3872)
  • [6] J. Schauder, Über lineare elliptische Differential gleichungur zweiter Ordnung, Math. Z. 38 (1934), 257-282. MR 1545448
  • [7] -, Numerische Abschätzungen in elliptischen linearen Differential-gleichungen, Studia Math. 5 (1934), 34-42.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J70

Retrieve articles in all journals with MSC: 35J70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0316895-X
Keywords: Singular elliptic equations, boundary value problem, maximum principle, barrier function, Schauder lemma
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society