Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the reduction of complex bordism to unoriented bordism


Author: David Copeland Johnson
Journal: Proc. Amer. Math. Soc. 39 (1973), 417-420
MSC: Primary 55B20
DOI: https://doi.org/10.1090/S0002-9939-1973-0322853-1
MathSciNet review: 0322853
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The image of the natural transformation from the complex bordism of a CW complex $ X,M{U_ \ast }(X)$, to its unoriented bordism, $ {N_ \ast }(X)$, is contained in a subgroup identified with $ {H_ \ast }(X;Z) \otimes {({N_ \ast })^2}$. A characterization is given for the CW complexes for which the image and the subgroup coincide.


References [Enhancements On Off] (What's this?)

  • [1] T. Bröcker and T. tom Dieck, Kobordismentheorie, Lecture Notes in Math., vol. 178, Springer-Verlag, Berlin and New York, 1970. MR 43 #1202. MR 0275446 (43:1202)
  • [2] P. E. Conner and L. Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), 117-221. MR 42 #2473. MR 0267571 (42:2473)
  • [3] P. S. Landweber, Complex bordism of classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175-179. MR 42 #3782. MR 0268885 (42:3782)
  • [4] J. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230. MR 31 #5207. MR 0180977 (31:5207)
  • [5] G. E. Mitchell, The image of $ \mathcal{U}{}_ \ast (X) \to \mathcal{N}{}_ \ast (X)$, Proc. Amer. Math. Soc. 26 (1970), 505-508. MR 43 #4039. MR 0278309 (43:4039)
  • [6] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29-56. MR 0290382 (44:7566)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55B20

Retrieve articles in all journals with MSC: 55B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0322853-1
Keywords: Complex bordism, unoriented bordism, projective dimension
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society