Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic inversion of Laplace transforms: a class of counterexamples


Author: John S. Lew
Journal: Proc. Amer. Math. Soc. 39 (1973), 329-336
MSC: Primary 44A10
DOI: https://doi.org/10.1090/S0002-9939-1973-0324325-7
MathSciNet review: 0324325
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a complex-valued locally integrable function on $ [0, + \infty )$, and let $ Lf$ be its Laplace transform, whenever and wherever it exists. We review some known methods, exact and approximate, for recovering $ f$ from $ Lf$. Since numerical algorithms need auxiliary information about $ f$ near $ + \infty $, we note that the behavior of $ f$ near $ + \infty $ depends on the behavior of $ Lf$ near 0 +, hence that our ability to retrieve $ f$ is limited by the class of momentless functions, namely, all functions $ f$ such that $ Lf(s)$ converges absolutely for $ \operatorname{Re} (s) > 0$ and satisfies

$\displaystyle Lf(s) = o({s^n}){\text{ near }}0 + \quad {\text{for}}\;n = 0,1,2, \cdots .$

We discuss the space $ Z$ of momentless functions and complex distributions, then construct a family of elements in this space which defy various plausible conjectures.

References [Enhancements On Off] (What's this?)

  • [1] R. E. Bellman, R. E. Kalaba and J. A. Lockett, Numerical inversion of the Laplace transform: Applications to biology, economics, engineering and physics, American Elsevier, New York, 1966. MR 34 #5282. MR 0205454 (34:5282)
  • [2] J. W. Cooley, P. A. W. Lewis and P. D. Welch, The fast Fourier transform algorithm: programming considerations in the calculation of sine, cosine, and Laplace transforms, J. Sound Vib. 12 (1970), 315-337.
  • [3] G. Doetsch, Handbuch der Laplace-Transformation. Band I: Theorie der Laplace-Transformation, Verlag Birkhäuser, Basel, 1950. MR 13, 230. MR 0043253 (13:230f)
  • [4] -, Handbuch der Laplace-Transformation. Band II: Andwendungen der Laplace-Transformation, Verlag Birkhäuser, Basel, 1955. MR 18, 35. MR 0344808 (49:9547)
  • [5] A. Erdélyi et al., Tables of integral transforms. Vol. I, McGraw-Hill, New York, 1954. MR 15, 868. MR 0061695 (15:868a)
  • [6] H. Goldenberg, The evaluation of inverse Laplace transforms without the aid of contour integration, SIAM Rev. 4 (1962) 94-104. MR 25 #397. MR 0136937 (25:397)
  • [7] R. A. Handelsman and J. S. Lew, Asymptotic expansion of Laplace transforms near the origin, SIAM J. Math. Anal. 1 (1970), 118-130. MR 41 #4142. MR 0259504 (41:4142)
  • [8] -, Asymptotic expansion of Laplace convolutions for large argument, SIAM Rev. 13 (1971), 269.
  • [9] -, Asymptotic expansion of Laplace convolutions for large argument and tail densities for certain sums of random variables, SIAM J. Math. Anal. (to appear). MR 0344766 (49:9505)
  • [10] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [11] T. E. Hull and C. Froese, Asymptotic behavior of the inverse of a Laplace transform, Canad. J. Math. 7 (1955), 116-125. MR 16, 584. MR 0066485 (16:584g)
  • [12] J. Lavoine, Sur les théorèmes abéliens et taubériens de la transformation de Laplace, Ann. Inst. Henri Poincaré 4 (1966), 49-65. MR 34 #6452. MR 0206634 (34:6452)
  • [13] H. Mellin, Abriss einer allgemeinen und einheitlichen Theorie der asymptotische Reihen, Wissenschaftliche Vorträge gehalten auf dem 5 Kongress der Skandinav. Mathematiker in Helsingfors, 4-7 Juli 1922, vol. 1, 1922, pp. 1-17.
  • [14] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808. MR 0152834 (27:2808)
  • [15] L. Schwartz, Mathematics for the physical sciences, Hermann, Paris, 1966. MR 0207494 (34:7309)
  • [16] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959. MR 21 #5029.
  • [17] E. Wagner, Taubersche Sätze reeler Art für die Laplace-Transformation, Math. Nachr. 31 (1966), 153-168. MR 33 #3003. MR 0194797 (33:3003)
  • [18] -, Ein reeler Tauberschen Satz für die Laplace-Transformation, Math. Nachr. 36 (1968), 323-331. MR 38 #1436. MR 0233113 (38:1436)
  • [19] D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N.J., 1941. MR 3, 232.
  • [20] -, Inversion of a heat transform by use of series, J. Analyse Math. 18 (1967), 389-413. MR 35 #2088. MR 0211206 (35:2088)
  • [21] -, An introduction to transform theory, Pure and Appl. Math., vol. 42, Academic Press, New York, 1971.
  • [22] A. H. Zemanian, Distribution theory and transform analysis. An introduction to generalized functions, with applications, McGraw-Hill, New York, 1965. MR 31 #1556. MR 0177293 (31:1556)
  • [23] V. Riekstyna, Generalized asymptotic expansions for a contour integral, Latvijas Valsts Univ. Zinātn. Raksti 28 (1959), 111-126. MR 23 #A483. MR 0123154 (23:A483)
  • [24] -, Asymptotic expansions of some integrals and the sums of power series, Latvian Math. Yearbook 9 (1971), 203-220.
  • [25] E. Wagner, Taubersche Sätze reeler Art für Integraltransformationen mit Kernen der Form exp $ h(s)t$, Wiss. Z. Univ. Rostock 20 (1971), 313-320. MR 0425522 (54:13477)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A10

Retrieve articles in all journals with MSC: 44A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0324325-7
Keywords: Laplace transform, asymptotic inversion, inverse Abelian theorem, Tauberian theorem, Mellin series
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society