On uniform elementary estimates of arithmetic sums

Author:
Stefan A. Burr

Journal:
Proc. Amer. Math. Soc. **39** (1973), 497-502

MSC:
Primary 10H25

DOI:
https://doi.org/10.1090/S0002-9939-1973-0314784-8

MathSciNet review:
0314784

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple, elementary method is given for deriving estimates of sums of arithmetic functions, the estimates being in a certain sense uniform over a class of functions appearing in the summation. The method is particularly well suited to estimates needed in applications of Selberg's sieve.

**[1]**Paul T. Bateman,*Proof of a conjecture of Grosswald*, Duke Math. J.**25**(1957), 67–72. MR**0091970****[2]**J. P. Tull,*Dirichlet multiplication in lattice point problems*, Duke Math. J.**26**(1959), 73–80. MR**0101852****[3]**J. P. Tull,*Dirichlet multiplication in lattice point problems. II*, Pacific J. Math.**9**(1959), 609–615. MR**0107637****[4]**B. M. Wilson,*Proofs of some formulae enunciated by Ramanujan*, Proc. London Math. Soc. (2)**21**(1922), 235-255.**[5]**E. C. Titchmarsh,*The Theory of the Riemann Zeta-Function*, Oxford, at the Clarendon Press, 1951. MR**0046485****[6]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, 4th ed., Oxford Univ. Press, London, 1960.**[7]**S. A. Burr,*An elementary solution of the Waring-Goldbach problem*(to appear).**[8]**Harold N. Shapiro and Jack Warga,*On the representation of large integers as sums of primes. I*, Comm. Pure Appl. Math.**3**(1950), 153–176. MR**0037323**, https://doi.org/10.1002/cpa.3160030204**[9]**A. O. Gel′fond and Yu. V. Linnik,*Elementary methods in the analytic theory of numbers*, Translated from the Russian by D. E. Brown. Translation edited by I. N. Sneddon. International Series of Monographs in Pure and Applied Mathematics, Vol. 92, Pergamon Press, Oxford-New York-Toronto, Ont., 1966. MR**0201368**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10H25

Retrieve articles in all journals with MSC: 10H25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1973-0314784-8

Article copyright:
© Copyright 1973
American Mathematical Society