Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Brauer group of an Amitsur field


Author: Chan Nan Chang
Journal: Proc. Amer. Math. Soc. 39 (1973), 493-496
MSC: Primary 13A20; Secondary 13J05
DOI: https://doi.org/10.1090/S0002-9939-1973-0314812-X
MathSciNet review: 0314812
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we compute the entire Brauer groups of Amitsur fields (i.e. certain fields of formal power series $ {K_m}$ described in §1); these are interesting generalizations of the Brauer groups over the fields of local class field theory.


References [Enhancements On Off] (What's this?)

  • [1] A. Adrian Albert, Structure of algebras, Revised printing. American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. MR 0123587
  • [2] S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408–420. MR 0318216, https://doi.org/10.1007/BF02764632
  • [3] Emil Artin, Algebraic numbers and algebraic functions, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0237460
  • [4] D. G. Northcott, An introduction to homological algebra, Cambridge University Press, New York, 1960. MR 0118752
  • [5] Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962 (French). MR 0150130
  • [6] E. Witt, Schiefkörper über diskret bewerteten Körpern, J. Reine Angew. Math. 176 (1936), 153-156.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A20, 13J05

Retrieve articles in all journals with MSC: 13A20, 13J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0314812-X
Keywords: Amitsur field, Brauer group, character group, crossed product, cyclic algebra, division algebra, regular local field
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society