Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An isolated bounded point derivation


Author: Anthony G. O’Farrell
Journal: Proc. Amer. Math. Soc. 39 (1973), 559-562
MSC: Primary 46J10
DOI: https://doi.org/10.1090/S0002-9939-1973-0315452-9
MathSciNet review: 0315452
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a compact subset $ X$ of the plane, $ R(X)$ denotes the class of uniform limits on $ X$ of rational functions with poles off $ X$. $ R(X)$ is a function algebra on $ X$. An example $ X$ is constructed such that $ R(X)$ admits a bounded point derivation at exactly one point of $ X$.


References [Enhancements On Off] (What's this?)

  • [1] Andrew Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 #7431. MR 0246125 (39:7431)
  • [2] -, Point derivations and analytic structure in the spectrum of a Banach algebra, J. Functional Analysis 7 (1971), 156-164. MR 42 #8286. MR 0273407 (42:8286)
  • [3] Alfred P. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis 4 (1969), 153-165. MR 39 #4680. MR 0243358 (39:4680)
  • [4] Robert McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391-395. MR 26 #4166. MR 0146646 (26:4166)
  • [5] John Wermer, Bounded point derivations on certain Banach algebras, J. Functional Analysis 1 (1967), 28-36. MR 35 #5948. MR 0215105 (35:5948)
  • [6] Lawrence Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., no. 50, Springer-Verlag, Berlin and New York, 1968. MR 37 #3018. MR 0227434 (37:3018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10

Retrieve articles in all journals with MSC: 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315452-9
Keywords: Bounded point derivation, uniform norm, Swiss Cheese
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society