Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Distance spheres in complex projective spaces


Author: Alan Weinstein
Journal: Proc. Amer. Math. Soc. 39 (1973), 649-650
MSC: Primary 53C20
Erratum: Proc. Amer. Math. Soc. 48 (1975), 519.
MathSciNet review: 0315631
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Distance spheres in complex projective spaces are counterexamples to the odd-dimensional extension of a lemma of Klingenberg.


References [Enhancements On Off] (What's this?)

  • [1] M. Berger, On the diameter of some Riemannian manifolds, Technical Report, University of California, Berkeley, 1962.
  • [2] Isaac Chavel, A class of Riemannian homogeneous spaces, J. Differential Geometry 4 (1970), 13–20. MR 0270295
  • [3] Detlef Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966), 353–371 (German). MR 0196754
  • [4] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. (2) 69 (1959), 654–666. MR 0105709
  • [5] Wilhelm Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47–54 (German). MR 0139120
  • [6] Wilhelm Klingenberg, Über Riemannsche Mannigfaltigkeiten mit nach oben beschränkter Krümmung, Ann. Mat. Pura Appl. (4) 60 (1962), 49–59 (German). MR 0157321

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20

Retrieve articles in all journals with MSC: 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0315631-0
Keywords: Complex projective space, geodesics, sectional curvature
Article copyright: © Copyright 1973 American Mathematical Society