Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Model companions for $ \aleph \sb{0}$-categorical theories


Author: D. Saracino
Journal: Proc. Amer. Math. Soc. 39 (1973), 591-598
MSC: Primary 02H05
DOI: https://doi.org/10.1090/S0002-9939-1973-0316238-1
MathSciNet review: 0316238
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that any countable $ {\aleph _0}$-categorical theory without finite models has a model companion (which is also $ {\aleph _0}$-categorical). We find the model companions for all $ {\aleph _0}$-categorical abelian groups, and conclude with some remarks on the $ {\aleph _1}$ -categorical case.


References [Enhancements On Off] (What's this?)

  • [1] J. Barwise and A. Robinson, Completing theories by forcing, Ann. Math. Logic 2 (1970), no. 2, 119-142. MR 42 #7494. MR 0272613 (42:7494)
  • [2] I. Kaplansky, Infinite abelian groups, University of Michigan, Ann Arbor, Mich., 1971. MR 0065561 (16:444g)
  • [3] H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971. MR 0344115 (49:8855)
  • [4] P. Lindström, On model-completeness, Theoria (Lund) 30 (1964), 183-196. MR 31 #331. MR 0179066 (31:3317)
  • [5] A. Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland, Amsterdam, 1963. MR 27 #3533. MR 0153570 (27:3533)
  • [6] -, Infinite forcing in model theory, Proc. Second Scandinavian Logic Sympos. North-Holland, Amsterdam, 1971. MR 0357106 (50:9574)
  • [7] J. Rosenstein, $ {\aleph _0}$-categoricity of groups (to appear). MR 0318268 (47:6815)
  • [8] -, $ {\aleph _0}$-categoricity of linear orderings, Fund. Math. 64 (1969), 1-5. MR 39 #3982. MR 0242652 (39:3982)
  • [9] J. Shoenfield, Mathematical logic, Addison-Wesley, Reading, Mass., 1967. MR 0225631 (37:1224)
  • [10] R. L. Vaught, Denumerable models of complete theories, Proc. Sympos. Foundations of Math. (Warsaw, 1959), Pergamon, Oxford; PWN, Warsaw, 1961, pp. 303-321. MR 32 #4011. MR 0186552 (32:4011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02H05

Retrieve articles in all journals with MSC: 02H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0316238-1
Keywords: Generic structure, model companion, model completion, categorical theory, $ {\aleph _0}$-categorical abelian group
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society