A CASE IN WHICH IRREDUCIBILITY OF AN ANALYTIC
GERM IMPLIES IRREDUCIBILITY
OF THE TANGENT CONE

RICHARD DRAPER

Abstract. There are simple examples in which a variety is irreducible at a point but has a reducible tangent cone. The following theorem is proved. If \(X_p \) is an irreducible analytic germ and if the Jacobian ideal becomes principal on the normalization then the tangent cone of \(X \) at \(p \) is irreducible. If, moreover, the singular set of \(X \) is a manifold at \(p \) then \(X \) is Whitney \(a,b \)-regular along the singular set at \(p \).

Let \(X \) be a pure \(r \)-dimensional analytic subset of open \(U \) in \(\mathbb{C}^n \). \(\mathcal{O}^n \) denotes the holomorphic structure sheaf on \(U \), \(I \) denotes the (self-radical) ideal sheaf defining \(X \) in \(U \), and \(\mathcal{O} \) denotes the resulting (reduced) holomorphic structure on \(X \). Let \(T=(T_1, \ldots, T_n) \) be coordinates on \(\mathbb{C}^n \). Hereafter \(J \) denotes the Jacobian ideal of \(X \) on \(X \). It is a coherent sheaf of ideals whose stalk at \(p \) is obtained as follows. Take the \(\infty \times n \) matrix whose entries are of the form \((\partial f/\partial T_j)_{X, j=1, \ldots, n, f \in I_p} \). \(J_p \) is the ideal in \(\mathcal{O}_p \) generated by the \((n-r) \times (n-r) \) subdeterminants of this matrix. It is sufficient to restrict \(f \) to a system of generators for \(I_p \) in which case one obtains a system of generators for \(J_p \). Thus we can assume that \(f \) belongs to a finite set \(\mathcal{F} \) of generators for \(I_p \). By replacing \(U \) by a smaller open set we may also assume \(f \) is holomorphic on \(U \), \(\forall f \in \mathcal{F} \), \(\{f_q, f \in \mathcal{F}\} \) generates \(I_q \), and the \((n-r) \times (n-r) \) subdeterminants obtained from the matrix

\[
(\partial f/\partial T_j)_{X, j=1, \ldots, n, f \in \mathcal{F}}
\]

have germs at \(q \) which generate the ideal \(J_q \) for all \(q \) in \(X \). Let \(t=\#(\mathcal{F}) \).

The singular set of \(X \), hereafter denoted \(Sg(X) \), is the locus of \(J \). Let \(\pi: (X', \mathcal{O}') \rightarrow (X, \mathcal{O}) \) denote the normalization of \(X \). The following are

Received by the editors July 17, 1972.

Key words and phrases. Tangent cone, Jacobian ideal, normalization, Whitney \(a,b \)-regularity.

\(^1\) This work was done while the author was a visiting staff member at Purdue University. The manuscript was prepared while the author was supported by NSF Grant GP-20139 Amendment Number 2 at the University of Notre Dame. The manuscript was revised while the author was a staff member at George Mason University.

© American Mathematical Society 1973

443
in natural one-to-one correspondence: \(\{ p'_1, \ldots, p'_k \} = \pi^{-1}(p) \), \(\{ p_1, \ldots, p_k \} = \) minimal primes of \(\mathcal{O}_p \), \(\{ X_1, \ldots, X_k \} = \) irreducible components of the germ of \(X \) at \(p \). We say \(J^{O'} \) is locally principal over \(p \) if and only if \(J_p^{O^{O'}} \) is principal for \(\lambda = 1, \ldots, k \). This is an open condition on \(X \).

Let \(T(X) = (p, u) \in X \times C^n | \sum f_i(p)u_i = 0 \ \forall f \in \mathcal{F} \) where \(f_i = \partial f/\partial T_j \). \(T(X, p) \) denotes the fiber of the projection of \(T(X) \) to \(X \). The singular points of \(X \) are those for which \(\dim T(X, p) > r \). We let \(Y \) denote the set of singular points. \(C_t(X) \) is the closure in \(T(X) \) of \(T(X - Y) \). \(C_t(X, p) \) is the fiber of \(C_t(X) \) over \(p \). It is the union of a collection of \(r \)-dimensional subspaces of \(C^n \). Let \(G^{n-1,r-1} \) be the Grassmann variety of \(r \)-dimensional subspaces of \(C^n \). If \(q \) is simple on \(X \), \(T(X, q) \) has a unique point \(\tau(X, q) \) in \(G^{n-1,r-1} \). Let \(\tau(X) \) denote the closure of \(\{(q, \tau(X, q)) | q \in X - Y \} \) in \(X \times G^{n-1,r-1} \). Let \(\tau(X, p) \) denote the fiber of the projection to \(X \). See [6, Theorem 5.1, p. 218 and Theorem 7.1, p. 224]. There is a natural map \(\varphi: C_t(X) \rightarrow \tau(X) \) which commutes with the projections to \(X \) and makes \(C_t(X) \) a fiber space of constant fiber dimension \(n - r \) over \(\tau(X) \). \(\tau(X) \rightarrow X \) is a proper modification of \(X \) which is an isomorphism exactly over \(X - Y \). Denote the structure sheaf on \(\tau(X) \) by \(\mathcal{O} \).

Let \((B_J(X), \mathcal{O}) \) denote the blowing-up of \(X \) along \(J \). This is a subspace of \(X \times P^n \) which can be realized as follows. Let \(\mathcal{F} \) denote the functions on \(X \) obtained from (*)). These are determinants which we enumerate in the following way for our subsequent convenience. Let \(\mathcal{F} = (f_1, \ldots, f_i) \) and let \(\lambda = (\lambda_1, \ldots, \lambda_{n-1}) \). By \(J_{\lambda} \) we mean the tuple obtained from (*) by taking subdeterminants from the \((n-r) \times n \) submatrix of (*) whose rows involve the functions \(f_{ij}, \ j = 1, \ldots, n-r \). Let \(J_{\lambda}, k = 1, \ldots, (n-r) \) denote the entry of this tuple ordered in some fixed manner. Let \(\lambda = (\cdots, J_{\lambda}, \cdots) \) be a fixed ordering of the tuples \(J_{\lambda} \). Introduce indeterminants \(Z_{\lambda}^k \) ordered in the same manner. Then \((B_J(X), \mathcal{O}) \) is the analytic space defined by the equations \(\{ Z_{\lambda}^k f_j^\mu - Z_{\lambda}^\mu f_j^k = 0, \ \forall \lambda, \mu, k, j \text{ subject to the above conventions} \} \) in \(X \times P^{N-1} \) where the \(Z_{\lambda}^k \) are homogeneous coordinates on \(P^{N-1} \) and \(N = (n-1)(n-r) \). \(B_J(X) \rightarrow X \) blows up exactly over \(X - Y \). We denote the fiber of this projection by \(B_J(X, p) \).

The tangent cone to \(X \) at \(p \), denoted \(C(X, p) \), is \(\{ u \in C^n | f^*(u) = 0 \ \forall f \in I_p \} \) where \(f^* \) denotes the leading form at \(p \) of \(f \). Since \(G(\mathcal{O}_p) \), the associated graded ring of \(\mathcal{O}_p \) with respect to its maximal ideal, is isomorphic to \(C[T]/A \) where \(A \) is the ideal generated by \(\{ f^*(T) | f \in I_p \} \), there is a one-to-one correspondence between the components of the cone \(C(X, p) \) and the minimal primes of \(G(\mathcal{O}_p) \). We use this and the fact, [6, (3.1), p. 212], that \(C_t(X, p) = C(X, p) \) to prove the theorem of this paper.

Proposition 1. With the notation and assumptions of the preceding paragraphs, the following are equivalent:
(i) \(\dim C_4(X, p) = r \),
(ii) \(\tau(X, p) \) is finite,
(iii) \(B_J(X, p) \) is finite,
(iv) \(J \) is locally principal over \(p \) on \((X', \mathcal{O}') \),
(v) \(C_4(X, p) = C(X, p) \).

Moreover, if these conditions hold then \(\#\tau(X, p) \leq \#B_J(X, p) \leq \#\{\text{irreducible components of } X_p\} \) and \(C(X, p) \) is a union of \(\#\tau(X, p) \) \(r \)-dimensional subspaces of \(C^n \).

Proof. As remarked earlier \(C_4(X, p) \) is the union of \(r \)-dimensional subspaces of \(C^n \). \(\tau(X, p) \) is the union of the Grassmann coordinates of these subspaces. Both \(C_4(X, p) \) and \(\tau(X, p) \) are algebraic sets. Clearly \(\dim C_4(X, p) = r \) if and only if \(\tau(X, p) \) is finite which proves the equivalence of (i) and (ii).

Indices have the meanings established in the description of \(B_J(X) \). We will show that to each point of \(\tau(X, p) \) there corresponds at least one and at most finitely many points of \(B_J(X, p) \). (This is always true. Moreover, when \(X \) is a complete intersection \((\tau(X), \mathcal{O}) \) and \((B_J(X), \mathcal{O}_{\text{red}}) \) are isomorphic. In [4, Remark (1.2), p. 3] it seems to be stated that they are always isomorphic. This does not appear to be true to us although we have been unable to produce a counterexample.) Let \((p, \alpha) \in \tau(X) \). Let \(a \) be affine coordinates for \(\alpha \). There exist simple points \(p_v \rightarrow p, c_v \in C, \) such that \(c_v J_\mu(p_v) \rightarrow a \) for at least one \(\mu \). Moreover, given any \(\mu \) such that \(J_\mu(p_v) \neq 0 \) for almost all \(v \) a sequence \(d_v \) exists such that \(d_v J_\mu(p_v) \rightarrow a \) on the subsequence of \(\{p_v\} \) at which \(J_\mu(p_v) \neq 0 \). The reason for this is that, if \(J_\mu(p_v) \neq 0 \), then \(J_\mu \) is (on the ray corresponding to) the Grassmann coordinates of \(T(X, p_v) \). Consequently \(c_v \in \{J_\mu(p_v), \cdots\} \) converges (on a subsequence of \(\{p_v\} \)) to a point \(b = (\cdots, b_2, \cdots) \) with the following properties (where \(\beta \) denotes the point of \(\mathbb{P}^{n-1} \) corresponding to \(b \)): \((p, \beta) \in B_J(X); b_2 \neq 0 \) then \(b_2 \) is proportional to \(a \); \(b_2 \neq 0 \) for some \(\lambda \). Thus, given \((p, \alpha) \) in \(\tau(X) \) we have constructed a point \((p, \beta) \) in \(B_J(X) \). How many such points can exist? The construction depends not only on \((p, \alpha) \) but also on \(a \). It is conceivable that for a different sequence \(\{q_v\} \), \(\{\lambda|b_2 \neq 0\} \) could change yielding another point of \(B_J(X, p) \) corresponding to \((p, \alpha) \). Since the only possible variation is in \(\{\lambda|b_1 \neq 0\} \) and since there are only finitely many choices for the tuple \(\lambda \), we conclude there are at most finitely many points on \(B_J(X, p) \) for each point on \(\tau(X, p) \). Consequently (ii) and (iii) are equivalent and the first inequality is proved.

Suppose \(B_J(X, p) \) is finite. Since \(B_J(X) \rightarrow X \) is a proper modification, \(B_J(X, q) \) is finite for all \(q \) near \(p \) and there is a natural map \(\theta: (X', \mathcal{O}') \rightarrow (B_J(X), \mathcal{O}) \) commuting with the projections to \(X \) over a neighborhood of \(p \). \(\theta \) is proper and surjective. (This is the universal mapping property of
normalization [1, 46.20, p. 456]. \(\mathcal{J} \mathcal{O} \) is locally principal and \(\mathcal{J} \mathcal{O}' \) is the pull-back of \(\mathcal{J} \mathcal{O} \) induced by \(\theta \) so \(\mathcal{J} \mathcal{O}' \) is locally principal which proves (iii) implies (iv) and the second inequality.

We also use \(\theta \) to prove (iii) implies (v). Both \(C_4(X, p) \) and \(C(\cdot, \mathcal{O}) \) distribute across unions so we may assume \(X_p \) is irreducible and only one point \(p' \) of \(X' \) lies over \(p \). Hence, existence of \(\theta \) shows that only one point is in \(B_r(X, p) \). Consequently \(\tau(X, p) \) consists of one point. Hence, \(C_4(X, p) \) consists of a single plane of dimension \(r \). Since every component of \(C(X, p) \) has dimension \(r \) (proving (v) implies (iii)) and \(C_4(X, p) \subseteq C(X, p) \), it follows that they are equal. This proves that (iii) implies (v).

It remains to prove that (iv) implies (iii). If \(\mathcal{J} \mathcal{O}' \) is locally principal over \(p \) then there is a natural map \(\psi: (X', \mathcal{O}') \rightarrow (B_r(X, \mathcal{O})) \), which commutes with projections to \(X \) over a neighborhood of \(p \). \(\psi \) is proper and surjective. (This is the universal mapping property of blowing-up [3, p. 123].) Since \(X' \) has finite fiber over \(p \), \(B_r(X, p) \) is finite. Q.E.D.

Corollary. Suppose \(X_j \) denote the irreducible components of \(X \) at \(p \), \(I_p(X_j), I_p(X) \), is the ideal defining \(X \), resp. \(X_j, \) at \(p \) and \(J_j, J \), is the Jacobian ideal defined by \(I_p(X) \), resp. \(I_p(X_j) \). Then \(J \) becomes locally principal over \(p \) on the normalization of \(X \) if and only if \(J_j \) becomes principal over \(p \) on the normalization of \(X_j \) for all \(j \).

Proof. \(C_4(X, p) = \bigcup C_4(X_j, p) \). Q.E.D.

Theorem 2. Let \(R \) be the local ring of a point \(p \) on a reduced, pure \(r \)-dimensional analytic space \(X \). Suppose that the Jacobian ideal becomes locally principal over \(p \) on the normalization of \(X \). Then each minimal prime ideal \(P \) of \(G(R) \) determines at least one minimal prime ideal \(\mathfrak{p} \) of \(R \) such that \(P = \text{rad}(\text{Ker}(G(R) \rightarrow G(R/\mathfrak{p}))) \). Moreover, \(G(R)/\mathfrak{p} \) is a polynomial ring in \(r \) variables over \(\mathbb{C} \).

Proof. The hypothesis implies that \(C(X, p) = C_4(X, p) \) and is a finite union of \(r \)-dimensional subspaces of \(\mathbb{C}^n \). These planes are in one-to-one correspondence with the minimal primes of \(G(R) \). Let \(L \) be the plane corresponding to \(P \). Because \(C(\cdot, \mathcal{O}) \) distributes across unions, there is at least one irreducible component \(Z \) of \(X_p \) such that \(L \subseteq C(Z, p) \). Applying the inequality of Proposition 1 we conclude that \#\(\tau(Z, p) \) = 1 and \(L = C(Z, p) \). \(Z \) is determined by a minimal prime ideal of \(R \) and \(P \) is the radical of the kernel of \(G(R) \rightarrow G(R/\mathfrak{p}) \). \(G(R/\mathfrak{p}) \) has as reduction a ring of polynomials in \(r \) indeterminants because \(L \) is a plane of dimension \(r \). Since \(G(R) \rightarrow G(R/\mathfrak{p}) \) is surjective \(G(R)/\mathfrak{p} \) is isomorphic to the reduction of \(G(R/\mathfrak{p}) \). Q.E.D.
Corollary. If, in addition to the hypothesis of the theorem, \(R \) is a domain, then \(G(R) \) has as reduction an integral domain.

Proof. (0) is the only minimal prime of \(R \) so \(G(R) \) can have only one minimal prime. Q.E.D.

Examples. The locus of \(Y^2 - X^3 = 0 \) is an example showing that \(G(R) \) need not be a domain.

In general the correspondence between primes of \(G(R) \) and primes of \(R \) is one-to-many, e.g. the locus of \(Y(Y-X^2) = 0 \).

The locus of \(XY - Z^2 = 0 \) shows that assuming \(C(X, p) \) a union of planes and \(X_p \) irreducible does not insure that \(C(X, p) \) is irreducible.

Question. What condition together with irreducibility of \(X_p \) insures irreducibility of \(C(X, p) \)? The condition given here seems overly strong since it insures that \(C(X, p) \) is a plane, not just irreducible.

Recall the Whitney conditions [6, §8]. If \(X \) is an analytic space, \(Y \) is a manifold, and \(p \in X \cap Y \), \(X \) is said to be \(a \)-regular along \(Y \) at \(p \) if: whenever \(\{p_v\} \in X - Sg(X) \) with \(p_v \to p \) and \(T(X, p_v) \to T \) then \(T \supset T(Y, p) \). \(X \) is said to be \(b \)-regular along \(Y \) at \(p \) if: whenever \(\{p_v\} \in X - Sg(X) \), \(\{q_v\} \in Y \), \(\{c_v\} \in C \) with \(p_v \to p \), \(q_v \to q \), \(T(X, p_v) \to T \) and \(c_v(p_v - q_v) \to v \) then \(v \in T \). \(X \) is said to be \(a, b \)-regular along \(Y \) at \(p \) if \(X \) is both \(a \)-regular and \(b \)-regular along \(Y \) at \(p \).

We can see that \(J0' \) locally principal over \(p \) allows us to determine \(\lim T(X, p_v) = T \). For the limit to exist, infinitely many \(p_v \) must be on one component \(X_\gamma \) of \(X \) at \(p \) and \(T = C(X_\gamma, p) \). Thus \(a \)-regularity reduces to the simple property: every component of \(C(X, p) \) contains \(T(Y, p) \) at \(p \) if \(J0' \) is locally principal over \(p \). This suggests that we examine the question: Does \(J0' \) locally principal over \(p \) insure \(X \) is \(a, b \)-regular along \(Sg(X) \) at \(p \)?

First we observe that \(J0' \) locally principal over \(p \) implies that either \(p \notin Sg(X) \) or else \(p \in Sg(X) \) and \(\dim_p Sg(X) = r - 1 \). This is because the locus of \(J \) is \(\pi \) (locus of \(J0' \)). The latter either has dimension \(r - 1 \) at some point over \(p \) or is empty at every point over \(p \) and \(\pi \) preserves dimensions.

In what follows we sometimes require that \(Sg(X) \) be a manifold at \(p \). By this we mean that it is a manifold with the reduced structure, not that it is a manifold with the structure induced by \(J \).

A fundamental tool is the following proposition proved by John Stutz.

Proposition 3. Let \(X \) be a reduced analytic space of pure dimension \(r \) at \(p \) with \(p \in Sg(X) \) and \(Sg(X) \) a manifold at \(p \). Assume that \(\dim C(X, p) = r \).

Then \(X \) has a Puiseux series normalization at \(p \), i.e. there exists a ball \(D \subset C^r \) and holomorphic maps \(f_j : D \to X_j \) where \(X_j \) are the irreducible components of \(X \) at \(p \) such that

(a) \(f_j \) is a homeomorphism;

(b) there are coordinates \((x), (y) \) in \(C^r \) and \(C^m \) (the ambient space for \(X \) at

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
so that \(y(p) = 0 \) and \(f_j(x) = (x_1, \ldots, x_{r-1}, x_i^{d_j}, f_{r+1,j}(x), \ldots, f_{m,j}(x)) \), and the ball \(D \) and coordinates \((x) \), \((y) \) are independent of \(j \); and

(c) \(Y = C_{y_1, \ldots, y_{r-1}} \);

(d) if \(X_j \) contains \(Sg(X) \) at \(p \) then \(d_j \leq \text{order of } f_{k,j}(x) \) in \(x_r \), \(\forall k \).

Proof. [5, Propositions 4.2 and 4.6].

Corollary. With \(X \) as in the proposition the normalization of \(X \) is a manifold.

Example. The locus \(X \) of \(y^2 - x^2 (z - x) \) has singular set \(C_z \) and normalization a manifold but \(C_4(X, 0) \) has dimension three so the condition is not necessary.

Theorem 4. Let \(X \) be a reduced analytic space of pure dimension \(r \) at \(p \) with \(p \) in \(Sg(X) \) and \(Sg(X) \) a manifold at \(p \). Suppose that the Jacobian ideal of \(X \) becomes locally principal over \(p \) on the normalization of \(X \). Then \(X \) is \(a,b \)-regular along \(Sg(X) \) at \(p \) if and only if every irreducible component of \(X \) at \(p \) contains \(Sg(X) \) at \(p \). Any component of \(X \) which does not contain \(Sg(X) \) at \(p \) is a manifold at \(p \).

Proof. (We understand that Stutz has also proved this theorem in a paper of his to appear in the Amer. J. Math. so we give only an indication of the proof.) Using the Jacobian matrix of the mapping \(f_j \) of Proposition 3 it is easy to see that \(Sg(X_j) \subseteq Y \). If \(X_j \) does not contain \(Y \), \(\dim Sg(X_j) < r - 1 \). By an earlier remark \(Sg(X_j) = \emptyset \) which proves the last claim of the theorem. Now the only if part follows from Hironaka’s result [2, Corollary 6.2] that \(a,b \)-regularity implies equimultiplicity. The converse follows by careful analysis of the Jacobian matrix of the mapping \(f_j \) of Proposition 3. Q.E.D.

Examples. It is easy to use this theorem to construct an example in which \(J \) principalizes on the normalization but \(X \) is not \(a,b \)-regular along \(Sg(X) \) at \(p \). Zariski has given an example in which \(J \) becomes principal on the normalization but \(Sg(X) \) is not manifold at \(p \) [7, footnote 3, p. 987].

Remarks. In [5] Stutz proved, among other things, a number of the results of this paper under additional hypotheses. He proved the equivalence of (i) and (v) of Proposition 1 assuming that \(Sg(X) \) is a manifold of dimension \(r - 1 \) at \(p \) and \(\dim C_b(X, p) = r + 1 \). He proved Theorem 4 assuming \(p \) simple in \(Sg(X) \), \(Sg(X) \) a manifold of dimension \(r \) at \(p \), \(\dim C_b(X, p) = r \), and \(\dim C_b(X, p) = r + 1 \). We improve upon this result by applying Proposition 3 to the question of \(a,b \)-regularity directly rather than passing through the existence of wings as Stutz did. The assumptions used by Stutz insure that every component of \(X \) at \(p \) contains \(Sg(X) \) at \(p \) but he has told us the converse is not true. Where this paper extends part
of [5] most effectively is in the characterization of \(\dim C_4(X, p) = r \) by means of the Jacobian ideal (Zariski uses this technique to get a criterion of equisingularity in [7, Theorem 5.1, p. 987]). Not only does this technique yield better results, e.g. \(\dim C_4(X, p) = r \) always implies \(C_4(X, p) = C(X, p) \) and an avoidance in Theorem 4 of the cone \(C_5(X, p) \) which is difficult to compute, but it raises a number of interesting questions in the formal case.

Question. Suppose \(R = S/p \) where \(p \) is prime and \(S = k[[y_1, \ldots, y_n]] \) and \(R/J \) is regular and \(JR' \) is principal where \(R' \) is the integral closure of \(R \). Does it follow that \(R \) has a Puiseux series normalization? Is \(R' \) regular? Is the reduction of \(G(R) \) a domain? These results are true in the convergent case, yet the hypothesis and conclusion are punctual but the proofs are not. We hope to turn to these questions in a subsequent paper.

We are indebted to Abhyankar who proposed the question: What are the consequences of \(J \) locally principal over \(p \) on the normalization of \(X \)? and to the referee who suggested we examine the relation between some of these results and the paper of Stutz.

REFERENCES

DEPARTMENT OF MATHEMATICS, GEORGE MASON UNIVERSITY, FAIRFAX, VIRGINIA 22030