Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The growth of hypoelliptic polynomials and Gevrey classes

Authors: E. Newberger and Z. Zieleźny
Journal: Proc. Amer. Math. Soc. 39 (1973), 547-552
MSC: Primary 35H05; Secondary 46E35
MathSciNet review: 0318660
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For given hypoelliptic polynomials $ P$ and $ Q$, classes $ \Gamma _P^\rho (\Omega )$ and $ \Gamma _Q^\rho (\Omega )$ involving Gevrey type estimates on the successive iterates of the corresponding differential operators are defined. The equivalence of the inequality $ \vert Q(\xi ){\vert^2} \leqq C{(1 + \vert P(\xi ){\vert^2})^h},\xi \in {R^n}$, and the inclusion $ \Gamma _P^\rho (\Omega ) \subset \Gamma _Q^{\rho h}(\Omega )$ is proved.

References [Enhancements On Off] (What's this?)

  • [1] Lars Hörmander, Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York Inc., New York, 1969. MR 0248435
  • [2] Lars Hörmander, On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958), 197–218. MR 0106330,
  • [3] Hikosaburo Komatsu, A characterization of real analytic functions, Proc. Japan Acad. 36 (1960), 90–93. MR 0133599
  • [4] F. Trèves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Math. Appl., vol. 6, Gordon and Breach, New York, 1969. MR 37 #557.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35H05, 46E35

Retrieve articles in all journals with MSC: 35H05, 46E35

Additional Information

Keywords: Elliptic differential operator, hypoelliptic polynomial, Gevrey class
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society