INTERSECTING UNIONS OF MAXIMAL CONVEX SETS

MARILYN BREEN

Abstract. Hare and Kenelly have characterized the intersection of the maximal starshaped subsets of a set S, where S is compact, simply connected and planar, and Sparks has solved the general problem for maximal L_n sets. In this paper, a similar question is examined for unions of maximal convex sets: Let S be a subset of \mathbb{R}^2, \mathcal{C} the collection of all maximal convex subsets of S, and $\mathcal{N} = \{A \cup B : A, B \text{ distinct members of } \mathcal{C}\}$. Then $\bigcap \mathcal{N}$ is expressible as a union of three or fewer convex sets.

1. Intersecting unions of two maximal convex sets.

Lemma 1. Let \mathcal{C} be any family of sets and $\mathcal{M} = \{A_1 \cup \cdots \cup A_k : A_1, \cdots, A_k \text{ distinct members of } \mathcal{C}\}$. Then $x \in \bigcap \mathcal{M}$ if and only if there are at most $k - 1$ members of \mathcal{C} which fail to contain x.

Theorem 1. Let \mathcal{C} be any collection of closed convex subsets of the plane and let $\mathcal{M} = \{A \cup B : A, B \text{ distinct members of } \mathcal{C}\}$. Then $\bigcap \mathcal{M}$ can be expressed as a union of three or fewer closed convex sets.

Proof. We assume that $\bigcap \mathcal{M}$ is not convex and consists of more than three points, and that \mathcal{C} has at least three distinct members, for otherwise the result is trivial. We examine two cases.

Case 1. Assume that $\bigcap \mathcal{M}$ is three convex. That is, for x, y, z in $\bigcap \mathcal{M}$, at least one of the corresponding segments lies in $\bigcap \mathcal{M}$. Since $\bigcap \mathcal{M}$ is closed, if it is connected, then by a theorem of Valentine [3], $\bigcap \mathcal{M}$ is expressible as a union of three or fewer closed convex sets having a nonempty intersection, completing the proof. If $\bigcap \mathcal{M}$ is not connected, then it has exactly two closed components, each of which is necessarily convex by the three convexity of $\bigcap \mathcal{M}$. This completes Case 1.

Case 2. If $\bigcap \mathcal{M}$ is not three convex, there are points x, y, z in $\bigcap \mathcal{M}$ for which none of the corresponding segments lie in $\bigcap \mathcal{M}$. Thus there is some $A \cup B$ in \mathcal{M} not containing all three segments. Assume $x, y \in A$, $z \in B \sim A$. Then A is the only member of \mathcal{C} not containing z (by Lemma 1). Since $[x, y] \notin \bigcap \mathcal{M}$, there is some $C \cup D$ in \mathcal{M} not containing $[x, y]$, and without loss of generality we may assume $x \in C \sim D$, $y \in D \sim C$, $z \in D$.

Received by the editors September 5, 1972 and, in revised form, November 15, 1972.

Key words and phrases. Maximal convex subsets, unions of convex sets.

© American Mathematical Society 1973

587
Again by Lemma 1, D is the only member of \mathcal{G} not containing x, C the only one not containing y. Also, since $y, z \in D$, $[y, z] \subseteq D$. Since $y \in A \sim C$, $A \neq C$, and $A \cup C$ belongs to \mathcal{M}. Thus $z \in C$ and $[x, z] \subseteq C$.

Moreover, for any member E of \mathcal{G} distinct from each of A, C, D, by Lemma 1, E necessarily contains $x, y,$ and z.

We examine the following closed convex subsets of $\cap \mathcal{M}$. Define $A_0 = \bigcap \{E : E \in \mathcal{G}, E \neq A\}$, $C_0 = \bigcap \{E : E \in \mathcal{G}, E \neq C\}$, $D_0 = \bigcap \{E : E \in \mathcal{G}, E \neq D\}$. We will show that the only points of $\cap \mathcal{M}$ which fail to be in $A_0 \cup C_0 \cup D_0$ necessarily lie in $A \cap C \cap D \subseteq \ker(\cap \mathcal{M})$. It will then be easy to express $\cap \mathcal{M}$ as a union of three closed convex sets.

We begin by showing that $A \cap C \cap D$ is in $\conv(x, y, z)$. Let $p \in A \cap C \cap D$. If $[y, z]$ contains p, then $[y, p] \subseteq A$, $[p, z] \subseteq C$, and $[y, z] \subseteq A \cup C$. However $[y, z] \subseteq E$ for $E \neq A, C, D$. Also $[y, z] \subseteq D$, so $[y, z]$ would lie in $\cap \mathcal{M}$, a contradiction since none of the segments determined by x, y, z lie in $\cap \mathcal{M}$.

A parallel argument shows that neither $[x, y]$ nor $[x, z]$ contains a point of $A_0 \cap C_0 \cap D_0$. Now for p in $A \cap C \cap D$, if $[p, x]$ cut $[y, z]$ at q, then $[p, x] \subseteq A \cap C$, and $q \in A \cap C \cap D$ which is impossible by the preceding paragraph. Similarly $[p, y]$ cannot cut $[x, z]$, $[p, z]$ cannot cut $[x, y]$.

Also, $x \notin \conv(p, y, z)$ (for otherwise x would lie in D), $y \notin \conv(p, x, z)$, and $z \notin \conv(p, x, y)$.

Hence p must be interior to $\conv(x, y, z)$, and since $x, y, z \in E$ for every $E \neq A, C, D$, it follows that p is in every member of \mathcal{G} and in $\cap \mathcal{M}$.

Moreover, $p \in \ker(\cap \mathcal{M})$, for if $t \in \cap \mathcal{M}$, t fails to belong to at most one E in \mathcal{G}, so $[p, t]$ fails to lie in at most one member of \mathcal{G}, and $[p, t] \subseteq \cap \mathcal{M}$.

Now examine the sets A_0, C_0, D_0 defined previously. It is clear that each of these sets lies in $\cap \mathcal{M}$ by Lemma 1. For $u \in \cap \mathcal{M}$, either u fails to lie in one of A, C, D (and hence lies in one of A_0, C_0, D_0), or u lies in $A \cap C \cap D$. Since $A \cap C \cap D \subseteq \ker(\cap \mathcal{M})$, the set $\conv((A \cap C \cap D) \cup A_0)$ is a subset of $\cap \mathcal{M}$. Thus each of the sets $A_1 = \overline{\conv((A \cap C \cap D) \cup A_0)}$, $C_1 = \overline{\conv((A \cap C \cap D) \cup C_0)}$, $D_1 = \overline{\conv((A \cap C \cap D) \cup D_0)}$ is a closed convex subset of the closed set $\cap \mathcal{M}$, and $\cap \mathcal{M} = A_1 \cup C_1 \cup D_1$, completing the proof.

REMARK. It is easy to find examples which show that the number three in Theorem 1 is best possible. (See Example 1 of this paper.)

Using Theorem 1, it is possible to prove the following.

Theorem 2. Let S be planar, \mathcal{G} the collection of all maximal convex subsets of S. Let $\mathcal{N} = \{A \cup B : A, B$ distinct members of $\mathcal{G}\}$. Then $\cap \mathcal{N}$ can be expressed as a union of three or fewer convex sets.
Proof. By an easy application of Theorem 1, for \(\mathcal{M} = \{ \text{cl } A \cup \text{cl } B: A, B \text{ distinct members of } \mathcal{C} \} \), \(\bigcap \mathcal{M} \) is a union of three or fewer closed convex sets \(S_i, i = 1, 2, 3 \).

Let \(M_i = S_i \cap (\bigcap \mathcal{N}) \), \(i = 1, 2, 3 \). If each \(M_i \) is convex, the proof is complete. Assume otherwise to reach a contradiction. Suppose for \(v, w \) in \(M_1 \), \([v, w] \not\subseteq M_1 \). Then for some \(p \), \(v < p < w \), \(p \notin M_1 \). Therefore, there exist sets \(G, F \) in \(\mathcal{C} \) with \(p \notin G \cup F \). Without loss of generality, assume \(v \in G \sim F \), \(w \in F \sim G \).

If \(G, F \) are the only members of \(\mathcal{C} \), the proof is trivial. Otherwise, for every \(E \) in \(\mathcal{C} \sim \{ G, F \} \), \([v, w] \subseteq E \) by Lemma 1. Thus \(p \in [v, w] \subseteq E \subseteq S \). Also, since \(p \in S_1 \), \(p \in \text{cl } G \cup \text{cl } F \), so assume \(p \in \text{cl } G \). For every \(x \) in \(G \), if \([p, x] \subseteq S \), then the cone \(pG = \bigcup \{ [p, x]: x \text{ in } G \} \) would be a convex subset of \(S \) containing \(G \). But since \(G \) is maximal, this would imply that \(p \in G \), a contradiction. Hence for some \(x \) in \(G \), \([x, p] \subseteq S \). Clearly such an \(x \) cannot lie on the line \(L(v, w) \) determined by \(v \) and \(w \), since \([v, w] \subseteq S \) and \([x, v] \subseteq S \).

For some \(y, x < y < p, y \notin S \). Since \(x, p \in \text{cl } G \), \(y \in \text{cl } G \), and since \(G \) is convex, \(y \) must lie on \(\text{bdry } G \). There is a supporting hyperplane \(H \) to \(\text{cl } G \) at \(y \), and \(H \) contains \([x, p] \) since \([y, p] \subseteq \text{cl } G \sim G \subseteq \text{bdry } G \). Note that this implies \(x \in \text{bdry } G \), and therefore \(p \) sees via \(S \) all points interior to \(G \). Clearly \(\text{int } G \not\subseteq S \) since \(x \notin L(v, w) \).

Consider the cone \(G_1 = p(\text{int } G) = \bigcup \{ [p, x]: x \in \text{int } G \} \). This is a convex subset of \(S \). If necessary, extend \(G_1 \) to a maximal convex subset \(G_2 \) of \(S \).

It is easy to see that \(w \notin G_2 \): Let \(U \) be any spherical neighborhood of \(x \) disjoint from the line \(L(w, y) \). Certainly \(U \) contains points of \(\text{int } G \), and for \(x_1 \) in \(U \cap \text{int } G \), \(y \in \text{conv} \{ x_1, p, w \} \). If \(w \) were in \(G_2 \), then \(y \in G_2 \subseteq S \), a contradiction since \(y \notin S \).

Now \(p \in G_2 \sim G \), so \(G \not\subseteq G_2 \) and \(G \cup G_2 \) is in \(\mathcal{N} \). Since \(w \in M_1 \subseteq \bigcap \mathcal{N} \), \(w \) must lie in \(G \cup G_2 \), but this is clearly impossible by the preceding paragraph. Hence our assumption is false, each \(M_i \) is convex, and \(\bigcap \mathcal{N} \) is a union of three or fewer convex sets.

2. The general case. It would be interesting to obtain analogues of Theorems 1 and 2 for unions of \(k \) convex sets. The following results, although for special cases, invite the conjecture that the appropriate bound is \(k(k+1)/2 \).

Theorem 3. Let \(\mathcal{C} \) be any collection of \(k+1 \) closed convex subsets of the plane and let \(\mathcal{M} = \{ A_1 \cup \cdots \cup A_k: A_1, \cdots, A_k \text{ distinct members of } \mathcal{C} \} \). Then \(\bigcap \mathcal{M} \) is expressible as a union of \(k(k+1)/2 \) or fewer closed convex sets. The result is best possible for all \(k \).

Proof. The proof is by induction. The result is trivial for \(k=1 \), and for \(k=2 \), the result is an immediate consequence of Theorem 1. Assume the theorem true for \(2 < k-1 \) to prove for arbitrary \(k \).
Select any set A in \mathcal{C} and define subsets P, Q of $\bigcap \mathcal{M}$ in the following manner. Let

$P = \{x: x \in A \text{ and } x \text{ fails to lie in exactly } k - 1 \text{ members of } \mathcal{C} - \{A\}\},$

$Q = \{x: x \text{ fails to lie in at most } k - 2 \text{ members of } \mathcal{C} - \{A\}\}.$

Note that $x \in Q$ if and only if either $x \in A$ and x fails to lie in no more than $k-2$ members of \mathcal{C} or $x \notin A$ and x fails to lie in no more than $k-1$ members of \mathcal{C}. Using Lemma 1, it is clear that $P \cup Q = \bigcap \mathcal{M}$.

Examine the set Q. Now $\mathcal{C} - \{A\}$ is a collection of k closed convex sets in the plane. Letting

$\mathcal{N} = \{B_1 \cup \cdots \cup B_{k-1}: B_1, \cdots, B_{k-1} \text{ distinct members of } \mathcal{C} - \{A\}\},$

by our induction hypothesis, $Q = \bigcap \mathcal{N}$ is expressible as a union of $(k-1)k/2$ or fewer closed convex sets.

Furthermore, any point of P necessarily lies in exactly two members of \mathcal{C}, one of which is A. Letting $E_i = A \cap A_i$, A_i in $\mathcal{C} - \{A\}$, $1 \leq i \leq k$, then

$P = \bigcup_{i=1}^{k} E_i.$

Hence $P \cup Q = \bigcap \mathcal{M}$ is a union of $(k-1)k/2 + k = k(k+1)/2$ or fewer closed convex sets, completing the proof.

Example 1. To see that the result in Theorem 3 is best possible, let \mathcal{C} denote a collection of $k+1$ lines L_i, $1 \leq i \leq k+1$, every two intersecting and no three having a common point. Then the corresponding $\bigcap \mathcal{M}$ consists of exactly $k(k+1)/2$ isolated points.

In conclusion, we note that Example 1 reveals the "worst" case when \mathcal{C} is any family of lines, for a proof paralleling that of Theorem 3 shows that the bound is again $k(k+1)/2$. The only additional step involves showing that for A in \mathcal{C}, the corresponding P may be represented as a union of k or fewer convex sets: If more than k convex sets were required, there would be at least $k+1$ distinct members of $\mathcal{C} - \{A\}$, each intersecting A at a different point, and for x in $A \cap (\bigcap \mathcal{M})$, x would fail to lie in at least k members of \mathcal{C}, contradicting Lemma 1. Thus P has the desired representation and the result follows.

References

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069