Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ L\sp{p}$ norms and the equimeasurability of functions


Author: Kenneth F. Andersen
Journal: Proc. Amer. Math. Soc. 40 (1973), 149-153
MSC: Primary 28A20
DOI: https://doi.org/10.1090/S0002-9939-1973-0316662-7
MathSciNet review: 0316662
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For measurable functions $ f$ and $ g$, necessary and sufficient conditions are given for the equality of certain $ {L^p}$ norms of $ f$ and $ g$ to imply that $ f$ and $ g$ are equimeasurable.


References [Enhancements On Off] (What's this?)

  • [1] P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. MR 37 #5588. MR 0230022 (37:5588)
  • [2] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)
  • [3] D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N.J., 1941. MR 3, 232. MR 0005923 (3:232d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A20

Retrieve articles in all journals with MSC: 28A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0316662-7
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society