Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On valuation rings that contain zero divisors


Author: James A. Huckaba
Journal: Proc. Amer. Math. Soc. 40 (1973), 9-15
MSC: Primary 13F05
DOI: https://doi.org/10.1090/S0002-9939-1973-0318134-2
MathSciNet review: 0318134
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative ring with identity. A new proof is given of the theorem due to Samuel and Griffin which states that $ R$ is integrally closed in its total quotient ring if and only if $ R$ is the intersection of $ B$-valuation rings. We then prove the main result of the paper: If $ K$ is a $ \pi $-regular ring, then $ K$ admits only Prüfer rings as valuation rings.


References [Enhancements On Off] (What's this?)

  • [1] M. Biosen and M. Larsen, Prüfer and valuation rings with zero divisors, Pacific J. Math. 40 (1972), 7-12. MR 0309921 (46:9025)
  • [2] N. Bourbaki, Éléments de mathématique, Fasc. 30. Algèbre commutative, Chap. VI, Actualités Sci. Indust., no. 1308, Hermann, Paris, 1964. MR 33 #2660. MR 0194450 (33:2660)
  • [3] R. Gilmer, On Prüfer rings, Bull. Amer. Math. Soc. 78 (1972), 223-224. MR 0319980 (47:8521)
  • [4] R. Gilmer and J. Huckaba, $ \Delta $-rings, J. Algebra (to appear).
  • [5] M. Griffin, Generalizing valuations to commutative rings, Queen's Math. Preprint No. 1970-40, Queen's University, Kingston, Ontario, 1970.
  • [6] -, Prüfer rings with zero divisors, J. Reine Angew. Math. 239/240 (1967), 55-67. MR 41 #188. MR 0255527 (41:188)
  • [7] W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160-196.
  • [8] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
  • [9] M. Larsen, Harrison primes in a ring with few zero divisors, Proc. Amer. Math. Soc. 22 (1969), 111-116. MR 40 #1388. MR 0248134 (40:1388)
  • [10] M. Manis, Valuations on commutative rings, Proc. Amer. Math. Soc. 20 (1969), 193-198. MR 38 #2134. MR 0233813 (38:2134)
  • [11] N. McCoy, The theory of rings, Macmillan, New York, 1964. MR 32 #5680. MR 0188241 (32:5680)
  • [12] R. Raphael, Rings of quotients and $ \pi $-regularity, Pacific J. Math. 39 (1971), 229-233. MR 0308102 (46:7217)
  • [13] P. Samuel, La notion de place dans un anneau, Bull. Soc. Math. France 85 (1957), 123-133. MR 20 #7018. MR 0100588 (20:7018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F05

Retrieve articles in all journals with MSC: 13F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0318134-2
Keywords: Commutative rings with zero divisors, valuation ring, Prüfer ring, von Neumann regular ring, integral closure of a ring
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society