Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



More noneuclidian $ {\rm PID}$'s and Dedekind domains with prescribed class group

Authors: Paul Eakin and W. Heinzer
Journal: Proc. Amer. Math. Soc. 40 (1973), 66-68
MSC: Primary 13D15
MathSciNet review: 0319975
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Z$ denote the integers, $ Q$ the rationals, $ X$ an indeterminate and $ G$ a finitely generated abelian group. Then there is a Dedekind domain $ D$ such that $ Z[X] \subset D \varsubsetneqq Q[X]$, and $ D$ has class group $ G$. If $ G = 0$ then $ D$ is a noneuclidian PID.

References [Enhancements On Off] (What's this?)

  • [AEH] S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342. MR 0306173 (46:5300)
  • [C] L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222. MR 33 #4085. MR 0195889 (33:4085)
  • [B] N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chap. 7, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339.
  • [S$ _{1}$] P. Samuel, About euclidean rings, J. Algebra 19 (1971), 282-301. MR 43 #6190. MR 0280470 (43:6190)
  • [S$ _{2}$] -, Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Math., No. 30, Bombay, 1964. MR 35 #5428. MR 0214579 (35:5428)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13D15

Retrieve articles in all journals with MSC: 13D15

Additional Information

Keywords: Dedekind domain, euclidian ring, principal ideal domain, class group, Krull ring
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society