Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free topological groups and the projective dimension of a locally compact abelian group


Authors: John Mack, Sidney A. Morris and Edward T. Ordman
Journal: Proc. Amer. Math. Soc. 40 (1973), 303-308
MSC: Primary 22A05
DOI: https://doi.org/10.1090/S0002-9939-1973-0320216-6
MathSciNet review: 0320216
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a free topological group on a $ {k_\omega }$-space is a $ {k_\omega }$-space. Using this it is proved that if $ X$ is a $ {k_\omega }$-group then it is a quotient of a free topological group by a free topological group. A corollary to this is that the projective dimension of any $ {k_\omega }$-group, relative to the class of all continuous epimorphisms admitting sections, is either zero or one. In particular the projective dimension of a connected locally compact abelian group or a compact abelian group is exactly one.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arhangel'skiĭ, Mappings related to topological groups, Dokl. Akad. Nauk SSSR 181 (1968), 1303-1306=Soviet Math. Dokl. 9 (1968), 1011-1015. MR 38 #2237. MR 0233916 (38:2237)
  • [2] M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 305-364. MR 10, 11. MR 0025474 (10:11d)
  • [3] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996. MR 0103215 (21:1996)
  • [4] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 195-272. MR 7, 7. MR 0012301 (7:7b)
  • [5] E. Michael, Bi-quotient maps and Cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 2, 287-302; vii (1969). MR 39 #6277. MR 0244964 (39:6277)
  • [6] Sidney A. Morris. Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1-13. MR 41 #3655b. MR 0259011 (41:3655b)
  • [7] -, Varieties of topological groups and left adjoint functors, J. Austral. Math. Soc. (to appear). MR 0333059 (48:11384)
  • [8] -, Local compactness and free products of topological groups. II (submitted).
  • [9] -, Free products of connected locally compact groups are not sin groups. (submitted).
  • [10] -, Free products of Lie groups (submitted).
  • [11] Eric C. Nummela, The projective dimension of a compact abelian group, Proc. Amer. Math. Soc. 38 (1973), 452-456. MR 0313362 (47:1917)
  • [12] Edward T. Ordman, Free products of topological groups which are $ {k_\omega }$-spaces, Trans. Amer. Math. Soc. (to appear). MR 0352320 (50:4807)
  • [13] N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR 35 #970. MR 0210075 (35:970)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05

Retrieve articles in all journals with MSC: 22A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0320216-6
Keywords: Free topological groups, $ {k_\omega }$-space, projective abelian group
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society