Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The projective class group of the fundamental group of a surface is trivial


Author: Koo Guan Choo
Journal: Proc. Amer. Math. Soc. 40 (1973), 42-46
MSC: Primary 18G99; Secondary 55A05
DOI: https://doi.org/10.1090/S0002-9939-1973-0323869-1
MathSciNet review: 0323869
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D = {F_1} \times {F_2} \times \cdots \times {F_n}$ be a direct product of $ n$ free groups $ {F_1},{F_2}, \cdots ,{F_n},\alpha $ an automorphism of $ D$ which leaves all but one of the noncyclic factors in $ D$ pointwise fixed and $ T$ an infinite cyclic group. Let $ D{ \times _\alpha }T$ be the semidirect product of $ D$ and $ T$ with respect to $ \alpha $. We prove that the Whitehead group of $ D{ \times _\alpha }T$ and the projective class group of the integral group ring $ Z(D{ \times _\alpha }T)$ are trivial. The second result implies that the projective class group of the integral group ring over the fundamental group of a surface is trivial.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Projective modules over free groups are free, J. Algebra 1 (1964), 367-373. MR 31 #2290. MR 0178032 (31:2290)
  • [2] H. Bass, A. Heller and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 61-79. MR 30 #4806. MR 0174605 (30:4806)
  • [3] K. G. Choo, K. Y. Lam and E. Luft, On free product of rings and the coherence property, Proc. Conf. on Algebraic $ K$-Theory (Seattle, 1972) (to appear). MR 0360707 (50:13154)
  • [4] F. T. Farrell and W. C. Hsiang, A formula for $ {K_1}{R_\alpha }[T]$, Proc. Sympos. Pure Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1970, pp. 192-218. MR 41 #5457. MR 0260836 (41:5457)
  • [5] F. T. Farrell, The obstruction of fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971), 315-346. MR 0290397 (44:7578)
  • [6] S. Gersten, On class groups of free products, Ann. of Math. (2) 85 (1968), 392-398. MR 37 #254. MR 0224655 (37:254)
  • [7] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 33 #4922. MR 0196736 (33:4922)
  • [8] J. Stallings, Whitehead torsion of free products, Ann. of Math. (2) 82 (1965), 354-363. MR 31 #3518. MR 0179270 (31:3518)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18G99, 55A05

Retrieve articles in all journals with MSC: 18G99, 55A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0323869-1
Keywords: Projective class group, Whitehead group, fundamental group, direct product of free groups
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society