THE EQUATION $L(E, X^{**}) = L(E, X)^{**}$
AND THE PRINCIPLE OF LOCAL REFLEXIVITY

DAVID W. DEAN

Abstract. A new derivation of the equation $L(E, X^{**}) = L(E, X)^{**}$ is given, for dim$(E) < \infty$ and X a Banach space. From this equation the principle of local reflexivity is derived.

0. Introduction. The principle of local reflexivity [6] in the somewhat stronger form found in [5] is derived here from the equation $L(E, X)^{**} = L(E, X^{**})$. This equation is found explicitly in Schatten's monograph [7, pp. 40, 41] and at least implicitly in [3, p. 13]. Thus it is a classic formula in the theory of tensor products of Banach spaces. In §3 we use nontensor product methods to derive the equation $L(E, X^{**}) = L(E, X)^{**}$. The argument is easily accessible to students in a first functional analysis course.

1. Notation and preliminaries. Always X, Y, Z are Banach spaces and A, E, F are finite dimensional Banach spaces. All operators S, T, U, V, W are continuous linear operators and the Banach space of operators from X to Y is denoted by $L(X, Y)$. Always X is identified with its natural embedding in X^{**}. If $T \in L(X, Y^{**})$ and $(T_a) \subset L(X, Y)$ is a net such that $\lim_{a} f(T_{ax}) = T(x)$ for each $f \in Y^{*}$, $x \in X$ write $\omega^{*-}\operatorname{lim} T_a = T$. In the weak-star operator topology.

Lemma 1. Let (T_a) be a net in $L(X, Y)$ and $T \in L(X, Y^{**})$ with $\|T_a\| \leq \|T\|$ for each a. Suppose $A \subset X$, $TA \subset Y$ and $\omega^{*-}\operatorname{lim} a T_a = T$. Then, to $\varepsilon > 0$, there is a net $(S_a) \subset L(X, Y)$ such that $\|S_a\| < \|T\| + \varepsilon$, $\omega^{*-}\operatorname{lim} S_a = T$ and $S_a a = Ta$ for each a in A.

Proof. For each a in A, $(T_a a)$ converges weakly to Ta. Since dim$(A) < \infty$, using standard techniques (e.g. [2, p. 477]), a net of convex combinations of (T_a), say (U_a), converges in norm on A, and $\omega^{*-}\operatorname{lim} U_a = T$. Write $X = A \oplus Z$ and set $S_a(a + f) = Ta + U_a f$. Then $S_a \in L(X, Y)$ and $\|S_a - U_a\| \leq \varepsilon$. Thus, for large a, $\|S_a\| < \|T\| + \varepsilon$.

If dim$(E) = 1$, then $L(E, X)^{**} = L(E, X^{**})$ is simply the statement that the unit ball $U_1(X) = \{x, \|x\| \leq 1\}$ is weak-star dense in $U_1(X^{**})$. As
described below, the equation means that, for each T in $L(E, X^{**})$, there is a net $(T_n) \subseteq L(E, X)$ such that $\|T_n\| \leq \|T\|$ and $w^*\text{-}\lim T_n = T$.

To see that this is the meaning of the equation let e_1, \ldots, e_n be a basis for E and identify each T in $L(E, X)$ with the usual coordinatewise vector and scalar operations and set $\|F\| = \sup\{\|\sum a_i x_i\|, \|\sum a_i e_i\| \leq 1\}$, so that the identification is an isometry between $L(E, X)$ and Y. Then $Y^* = \prod_{i}^n X^*$ with

$$\|x_i^*\| = \sup \left\{ \sum x_i^* (x_i) \left| \|x_i^*\| \leq 1 \right\}$$

and $Y^{**} = \prod_{i}^n X^{**}$ with $\|x_i^{**}\| = \sup\{\|\sum x_i^{**} (x_i^*)\|, \|x_i^{**}\| \leq 1\}$. Now associate each element (x_i^{**}) of $\prod_{i}^n X^{**}$ with the operator T such that $T e_i = x_i^{**}$. If $\|x_i^{**}\| = 1$ and $\|(x_i^*)\| \leq 1$ such that $\sum x_i^* (x_i^*) \rightarrow \sum x_i^{**} (x_i^*)$ for each (x_i^*) in X^*, then $x^* (\sum b_i x_i^*) \rightarrow (\sum b_i x_i^{**})(x^*)$ for each x^* in X^*. Thus $\|\sum b_i x_i^{**}\| \leq \sum b_i \|x_i^{**}\|$. It easily follows that, if $\sqrt{1} > 0$, $\|x_i^*\| = \sup\{\|\sum b_i x_i^{**}\|, \|\sum b_i e_i\| \leq 1\} \geq (1 - \sqrt{1}) \|T\|$ for large α or $\|x_i^{**}\| \geq \|T\|$.

In summary, the mapping $(x_i^{**}) \rightarrow T$ is a norm decreasing mapping from $L(E, X^{**})$ onto $L(E, X^{**})$ which is continuous with the weak-star topology on $L(E, X^{**})$ and the weak-star operator topology on $L(E, X^{**})$. Further it is the identity on $L(E, X)$. The equation $L(E, X^{**}) = L(E, X^{**})$ means this mapping is an isometry.

2. Local reflexivity. Let F be subspace of X^* with basis $\{f_1, \ldots, f_k\}$ and let $T \in L(E, X^{**})$ with E having basis $\{e_1, \ldots, e_n\}$ such that $[e_1, \ldots, e_m] = E \cap X$. The pairs (f_i, e_j) define functionals on $L(E, X)$ by $(f_i, e_j)(S) = f_i (S e_j)$ (it is easy to compute that $\|(f_i, e_j)\| = \|f_i\| \|e_j\|$). Using Helly’s theorem (e.g. [8, p. 103]), and the equation $L(E, X^{**}) = L(E, X^{**})$ there is an S such that $\|S\| = 1 + \sqrt{1}$ and $(f_i, e_j)(S) = T e_i (f_j)$ for each i, j. Thus $f (S e) = T e (f)$ for every f in F, e in E. (This argument is used in Lemma 1, [4].) One may assume, by enlarging F if necessary, that for each e there is a norm one f such that $(1 - \sqrt{1}) \|Te\| < \|Te\|$.

Theorem 1 (local reflexivity). Let $E \subseteq X^{**}$, $A = E \cap X$, and $F \subseteq X^*$. To $\delta > 0$, there is an S in $L(E, X)$ such that $(1 - \sqrt{1}) \|e\| < \|Se\| < (1 + \sqrt{1}) \|e\|$, $S a = a$ for each a in A, and $f (S e) = e (f)$ for each e in E, f in F.

Proof. As in the calculation preceding Theorem 1, enlarging F if necessary, assume $(1 - \sqrt{1}) \|e\| < \sup\{e (f)\} \|f\| \leq 1$, f in F. Letting T be the identity operator from E to X^{**} construct (T_n) such that $(1 - \sqrt{1}) \|e\| < \sup\{e (f)\} \|f\| \leq 1$, f in F. Letting T be the identity operator from E to X^{**} construct (T_n) such that $(1 - \sqrt{1}) \|e\| < \sup\{e (f)\} \|f\| \leq 1$,
\[\| T_e e \| < (1 + \delta) \text{ if } \| e \| = 1. \] Then \((1 - \delta/2)\| e \| < \| T_e e \| < \| e \|(1 + \delta) \) for every \(e \) and set \(S = T_e \) for some \(\alpha \).

3. **The derivation of** \(L(E, X^{**}) = L(E, X)** \). If \(E = l_{1,n} \) then the derivation is as follows. Let \(e_1, \ldots, e_n \) be the usual unit vector basis of \(l_{1,n} = E \). For \(T \) in \(L(E, X) \), \(\| T \| = \text{sup} \{ \| \sum \alpha_i T e_i \|, \sum |\alpha_i| \leq 1 \} \leq \max \{ \| T e_i \| \} \). But \(\| T \| \geq \max \| T e_i \| \) since \(\| e_i \| = 1 \) for each \(i \). Thus \(Y = \prod_1^n X \) has norm \(\| (x_i) \| = \max \{ \| x_i \| \} \). Then \(Y^* = \prod_1^n X^* \) has norm, \(\| (x_i^*) \| = \sum |x_i^*| \) and \(Y^{**} = \prod_1^n X^{**} \) has norm, \(\| (x_i^{**}) \| = \max \{ \| x_i^{**} \| \} \). The latter is the norm for \(L(E, X^{**}) \) so that the mapping of \(Y^{**} \) to \(L(E, X^{**}) \) in §1 is an isometry.

Now let \(E, \varepsilon > 0 \) be given and let \(V \) be an operator on \(l_{1,n} \) to \(E \) such that \(V \{ (u| |u| < 1 + \varepsilon) \} = \{ e| \| e \| \leq 1 \} \). That such \(l_{1,n}, V \) exist may be seen by embedding \(E^* \) into an \(l_{\infty,k} \) in such a way that \(\| e^* \| \geq \| U e^* \| \geq (1 - \alpha) \| e^* \| \) and choosing \(\alpha \) small and \(V = U^* \). If \(T \in L(E, X^{**}) \), then \(T V \in L(l_{1,n}, X^{**}) \) and \(\| T V \| \leq \| T \| \). Set \(A = \{ u| TV u \in X \} \). There is a net \((S_{\alpha}) \) in \(L(l_{1,n}, X) \) such that \(\| S_{\alpha} \| \leq \| TV \| (1 + \varepsilon) \), \(\varepsilon \)-op \(\lim S_{\alpha} = TV \), and by Lemma 1 we find \(S_{\alpha} \) such that \(S_{\alpha} u = TV u \) if \(u \in A \). In particular if \(V u = 0 \) then \(S_{\alpha} u = 0 \). Define \(T_{\alpha} \in L(E, X) \) by letting \(T_{\alpha} e = S_{\alpha} u \) if \(V u = e \). Because \(V u = 0 \) implies \(S_{\alpha} u = 0 \) one has that \(T_{\alpha} \) is well defined and in \(L(E, X) \). Moreover \(T_{\alpha} V = S_{\alpha} \). If \(\| e \| \leq 1 \) and \(\| u \| < 1 + \varepsilon \) such that \(V u = e \), then \(\| T_{\alpha} e \| = \| S_{\alpha} u \| \leq \| S_{\alpha} \| (1 + \varepsilon) \leq \| TV \| (1 + \varepsilon) \leq \| T \| (1 + \varepsilon)^2 \). Finally \(x^*(T_{\alpha} V u) \rightarrow (TV u) x^* \) and so \(x^*(T_{\alpha} e) \rightarrow (T e)(x^*) \) for every \(e \) in \(X^* \). Thus \(\varepsilon \)-op \(\lim T_{\alpha} = T \) since \(\varepsilon > 0 \) is arbitrary the mapping from \(L(E, X^{**}) \) to \(L(E, X^{**}) \) at the end of §1 is an isometry. This concludes the derivation.

Bibliography