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THE  EQUATION L(E, X**) = L(E, X)**
AND  THE  PRINCIPLE   OF  LOCAL  REFLEXIVITY

DAVID   W.   DEAN

Abstract. A new derivation of the equation L(E, X**) =

L(E, X)** is given, for dim(£)<oo and X a Banach space. From

this equation the principle of local reflexivity is derived.

0. Introduction. The principle of local reflexivity [6] in the somewhat

stronger form found in [5] is derived here from the equation £(£, X)** —

L(E, X**). This equation is found explicitly in Schatten's monograph

[7, pp. 40, 41] and at least implicitly in [3, p. 13]. Thus it is a classic

formula in the theory of tensor products of Banach spaces. In §3 we use

nontensor product methods to derive the equation L(E, X**) = L(E, X)**.

The argument is easily accessible to students in a first functional analysis

course.

1. Notation and preliminaries. Always A', Y, Z are Banach spaces and

A, E, £are finite dimensional Banach spaces. All operators S, T, U, V, W

are continuous linear operators and the Banach space of operators from

X to Y is denoted by L(X, Y). Always X is identified with its natural em-

bedding in X**. If TeL(X, Y**) and (Ta)<^L(X, Y) is a net such that

limf(Txx)=Tx(f) for each/in Y*, x in X write w*-op lim TX=T(TX-^T

in the weak-star operator topology).

Lemma 1. Let (Ta) be a net in L(X, Y) and T in L(X, Y**) with

II7J^II711 for each a.. Suppose A^X, TA^Y and w*-op lima Ta=T.
Then, to e>0, there is a net (SJ<=L(X, Y) such that ||SJ<||£||+e,

w*-op lim Sa= £ and 5^= Ta for each a in A.

Proof. For each a in A, (Txa) converges weakly to Ta. Since dim(A)<

oo, using standard techniques (e.g. [2, p. 477]), a net of convex combi-

nations of (£„), say (Ca), converges in norm on A, and w*-lim UX=T.

Write X=A®Z and set Sa(a+f)=Ta+UJ. Then SaeL(X,Y) and

||S«- l/.ll ̂ 0. Thus, for large a, ||SJ <||£|| +e.
If dim(£)=l, then L(E, X)** = L(E, X**) is simply the statement that

the unit ball  Ux(X) = {x, \\x\\^l} is weak-star dense in  UX(X**). As
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described below, the equation means that, for each T in L(E, X**),

there is a net (FJ<=L(£, X) such that ||FJ<-||F|| and n-*-op lim Ta=T.

To see that this is the meaning of the equation let ex, ■ ■ ■ , en be a basis for

E and identify each Fin L(E, X) with the «-tuple (Te(). In r=n.i X use

the usual coordinatewise vector and scalar operations and set ||(x¿)|| =

sup{ll2 aixài 112 a¿e¡ll = l}> so that the identification is an isometry

between L(E, X) and Y. Then F* = ni X* with

||(x*)|| =sup(2x*(x¿)|||(x¿)|| <lj

and Y**=UxX** with ||(x**)ll=sup{2 x**(x*)| ||(x*)||^l}. Now
associate each element (x**) of nî^** w'th the operator T such that

Te-xT- If ll(x**)|| = l and ||(x*)||^l such that 2 *f(*?)^Z *?*<*?)
for each (x*) in Y*, then x*("> ¿\x?)-K2 *<***){***) for each x* in **.

Thus limlliè.Xill^llI^xril- It easily follows that, if e>0, ||(x?)|| =
sup{||2^ll. 112 V*ll = 1} = (1 -e)||-r|| for large a or ||(xr)ll = l|F||.

In summary, the mapping (xf*)—>-F is a norm decreasing mapping

from L(E, X)** onto L(F, X**) which is continuous with the weak-star

topology on L(E, X)** and the weak-star operator topology on L(E, X**).

Further it is the identity on L(E, X). The equation L(E, X**) = L(E, X)**

means this mapping is an isometry.

2. Local reflexivity. Let F be subspace of X* with basis {fx, ■ ■ ■ ,fk}

and let Te L(E, X**) with £ having basis {ex, ■ ■ ■ , e„} such that [ex, •'•'•',

em] = EriX. The pairs (f, e¡) define functionals on L(E, X) by (f, e¿)(S) =

f(Sed (it is easy to compute that |(/„4)|H/<II IkJD- Using Helly's
theorem (e.g. [8, p. 103]), and the equation L(E, X)** = L(E, X**) there

is an S such that ||S|| < || T\\ +e and (f, e;)(5)= Te^fi) for each /,_/. Thus

f(Se)=Te(f) for every/in F, e in F. (This argument is used in Lemma 1,

[4].) One may assume, by enlarging F if necessary, that for each e there is

a norm one/in F such that (1—e)||Fe||<Fé,(/). Constructing S=SG for

each G=>F such that g(Se)= Te(g) for each g in G, e in E, and such that

l|SG||<||F||(l+£), then n-*-op limG Sn—T. By Lemma 1 there is a net

(Ta)<=L(E, X) such that iv*-op lim T„=T, 7^, = ^ if i<m,f(Tae) = Te(f)

for each e in E, f in F, and ||FJ<||F||(l+2e). Further, (l-e)||Fe||<

||Fae1<||F||(l+2e)ifH = l.

Theorem 1 (local reflexivity). Let E^X**, A=Er\X, andF^X*.

To <5>0, there is an S in L(E,X) such that (1-f5)||<?||<||Si?||<(l+<5)|M|,

Sa=afor each a in A, andf(Se)=e(f) for each e in E,f in F.

Proof. As in the calculation preceding Theorem 1, enlarging F if

necessary, assume(1—<5/2)||e||<sup{e(/)| ||/||^l,/£ F}. Letting Fbethe

identity operator from E to X** construct (FJ such that (1— <5/2)<
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||7.e||<(l+d) if ||e|| = l. Then (1 — a/2)||e||<||T^elK||e||(1+r5) for every

e and set S= Tx for some a.

3. The derivation of L(E, X**)=L(E, X)**. If £=/ln then the

derivation is as follows. Let {ex, ■ ■ • , en} be the usual unit vector basis of

/1>n=£. For £in £(£, X), ||£||=sup{||2 <ttfetl, I k^l}^max{||£ej}.

But || 7^11 grmaxll TeJI since lk|| = l for each ». Thus Y=\~\IX has norm

IfaN-mutf*)}. Then F*=nï^* has norm, ||(x*)|| = 2 R*?l and
Y** = YJX** has norm, ||(***)||=max{||x**||}. The latter is the norm

for £(£, X**) so that the mapping of Y** to £(£, X**) in §1 is an iso-

metry.

Now let £, £>0 be given and let V be an operator on lXn to £ such that

V({u\ ||«||<1+£})=> {e| ||e||5n}. That such lXn, V exist may be seen by

embedding £* into an l^^ in such a way that ||e*||^||t/e*||^(l— a)||e*||

and choosing a small and V= U*. If £ e L(E, X* *), then TV e £(/1>n, X* *)

and || £K|| ^ || £||. Set A = {u\ TVu e X}. There is a net (Sx) in L(l1:Jx) such

that ||SJ<;||£Pl(l-|-e), w*-op lim Sa=TV, and by Lemma 1 we find Sa

such that Sju=TVu if ueA. In particular if Vu=0 then Sxu=0. Define

Tx e L(E, X) by letting Txe=Sxu if Vu=e. Because Vu=0 implies Sxu=0

one has that Ta is well defined and in £(£, X). Moreover TXV=SX. If

llell^l and ||M||< 1+e such that Vu = e, then ||7^e|l = |1 S1««||^||^||( 1+e)<

||£K||(l+e)2^||£||(l-(-e)2. Finally x*(TxVu)^(TVu)x* and so x*(Txe)-+

(Te)(x*) for every e in X*. Thus w*-op lim TX=T. Since e>0 is arbitrary

the mapping from L(£, X)** to £(£, X**) at the end of §1 is an isometry.

This concludes the derivation.
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