ON SEMIPRIME P.I. RINGS
WALLACE S. MARTINDALE III

Abstract. The main results proved in this paper are that if R is a semiprime ring satisfying a polynomial identity then (1) the maximal right quotient ring of R is also P.I. and (2) every essential one-sided ideal of R contains an essential two-sided ideal of R.

The primary aim of this paper is to settle in the affirmative two recent conjectures of J. W. Fisher [1]: If R is a semiprime ring satisfying a polynomial identity then

(I) the maximal right quotient ring of R satisfies a polynomial identity,

(II) the maximal right quotient ring of R coincides with the maximal left quotient ring of R.

The main tool we use is a result (Theorem A, below) just recently proved by L. Rowen [4, Theorem 2], which in turn depends heavily on a fundamental theorem on central polynomials in matrix rings due to E. Formanek [2].

Let R be a ring, not necessarily having a unit element. If S is a subset of R, we let $r(S)$ denote $\{x \in R \mid Sx = 0\}$ and $l(S) = \{x \in R \mid xS = 0\}$. A right (left, two-sided) ideal J of R is essential if, for any right (left, two-sided) ideal K, $J \cap K = 0$ implies $K = 0$. A ring is semiprime if it has no nonzero nilpotent ideals. It is clear that in a semiprime ring a two-sided ideal U is essential if and only if $r(U) = 0$ or $l(U) = 0$, and an essential two-sided ideal is also essential as a one-sided ideal. Also in a semiprime ring it is easy to see that if J is an essential right ideal then $r(J) = 0$.

The set $Z(R) = \{x \in R \mid xJ = 0 \text{ for some essential right ideal } J\}$ is a two-sided ideal of R, called the right singular ideal of R. Similarly the left singular ideal $Z'(R)$ is defined. As we shall be concerned with rings R for which $Z(R) = 0$ (see Theorem I) the maximal right quotient ring Q of R may be characterized by the following properties:

(a) R is a subring of Q.
(b) If $f \in \text{Hom}_R(J, R)$, where J is an essential right ideal of R, then there exists $q \in Q$ such that $qx = f(x)$ for all $x \in J$.

Presented to the Society, September 11, 1972; received by the editors September 20, 1972.

AMS (MOS) subject classifications (1970). Primary 16A38, 16A12; Secondary 16A08.
Key words and phrases. Semiprime P.I. ring, maximal right quotient ring, essential right ideal.
(c) If \(q \in \mathcal{Q} \), there is an essential right ideal \(J \) of \(R \) such that \(qJ \subseteq R \).

(d) For all \(q \in \mathcal{Q} \), \(q = 0 \) if and only if \(qJ = 0 \) for some essential right ideal \(J \) in \(R \).

It is well known that \(\mathcal{Q} \) is regular in the sense of von Neumann.

As in [1] a ring \(R \) is said to satisfy a polynomial identity if there exists a (homogeneous multilinear) polynomial

\[
f(x_1, x_2, \ldots, x_n) = \sum_{i} \omega_i x_{i_1} x_{i_2} \cdots x_{i_n}
\]

in noncommuting indeterminates \(\{x_i\} \) (where \(i \) ranges over the symmetric group \(S_n \) and \(\omega_i \) lies in the centroid of \(R \)) such that \(f(r_1, r_2, \ldots, r_n) = 0 \) for all \(r_1, r_2, \ldots, r_n \in R \) and the kernel of \(\omega_i = 0 \). Such a ring is called a P.I. ring. We remark that a more general definition of polynomial identity could have been made which does not require \(f \) to be homogeneous multilinear, but the usual linearization process could be used to replace \(f \) by a homogeneous multilinear polynomial of degree not exceeding the degree of \(f \). On the other hand, in case \(R \) is a semiprime P.I. ring, it is well known that \(R \) in fact satisfies the so-called standard identity

\[
\sum_{i} \pm x_{i_1} x_{i_2} \cdots x_{i_n} = 0.
\]

The key theorem which lies behind the results in this paper is due to L. Rowen [4, Theorem 2] and we quote it as

Theorem A (Rowen). Let \(R \) be a semiprime P.I. ring with center \(C \) and let \(U \) be a nonzero ideal of \(R \). Then \(U \cap C \neq 0 \).

It is important to observe that the assumption made in [4] that \(R \) has a unit element is superfluous—the same proof may still be used.

Lemma 1. Let \(R \) be a semiprime ring with center \(C \) and let \(J \) be a right ideal of \(R \). Then the center of the ring \(J \) is equal to \(J \cap C \).

Proof. Let \(a \) lie in the center of \(J \) and let \(x, r \in R \). Then

\[
(ax - xa)(ax - xa) = (axr)ax - (axrx)a + x(axr)a - x(ar)ax
\]

\[
= a(axr)x - a(axrx) + xa(axr) - xa(ar)x
\]

\[
= 0.
\]

Since \(R \) is semiprime, \(ax - xa = 0 \), i.e., \(a \in C \).

Henceforth \(R \) will denote a semiprime P.I. ring with center \(C \). As a corollary to Theorem A we obtain immediately the following result due to Fisher [1, Theorem 1].

Theorem 1 (Fisher). \(Z(R) = 0 = Z'(R) \).

Proof. If \(Z(R) \neq 0 \), pick \(\lambda \neq 0 \in Z(R) \cap C \) by Theorem A. Then, for some essential right ideal \(J \), \(J\lambda = \lambda J = 0 \). Since \(R \) is semiprime, this contradicts \(r(J) = 0 \).
Lemma 2. If J is an essential right (left) ideal of R, then J is itself a semiprime P.I. ring.

Proof. Suppose \(A^2 = 0 \), where \(A \) is an ideal of J. Then \(AJ \) is a right ideal of \(R \) and \((AJ)^2 \subseteq A^2 = 0 \). Hence \(AJ = 0 \) since \(R \) is semiprime. But then \(A = 0 \) by Theorem 1.

We are now in a position to settle conjecture I.

Theorem 2. If \(R \) is a semiprime P.I. ring (satisfying the identity \(f \)) then the maximal right quotient ring \(Q \) of \(R \) satisfies this same polynomial identity.

Proof. Write \(f(x_1, x_2, \ldots, x_n) = \sum_{i} \omega_i x_i x_{i_2} \cdots x_{i_n} \), pick \(q_1, q_2, \ldots, q_n \in Q \), and set \(q = f(q_1, q_2, \ldots, q_n) \). By taking finite intersections there exists an essential right ideal \(J \) of \(R \) such that \(q_1J, q_2J, \ldots, q_nJ, qJ \) are all contained in \(R \). Let \(a \in J \) and write \(qa = b \in R \). Suppose \(b \neq 0 \). Then \(U = RbR \cap J \neq 0 \), since \(J \) is essential, and \(U \) is a two-sided ideal of the ring \(J \). By Lemma 2, \(J \) is a semiprime P.I. ring, and so we can apply Theorem A to \(J \) to conclude that \(U \) contains a nonzero element \(\lambda \) in the center of \(J \). But then by Lemma 1 \(\lambda \in C \). Therefore

\[
b\lambda^n = qa\lambda^n = \sum_i \omega_i q_{i_1}q_{i_2} \cdots q_{i_n}a\lambda^n
\]

since each \(q, \lambda \in R \). But this says that \(\lambda^{n+1} \in \lambda^n RbR = R(\lambda^n b)R = 0 \), a contradiction to \(\lambda \neq 0 \). Thus \(qJ = 0 \) and so \(q = 0 \).

The next theorem will be instrumental in proving conjecture II.

Theorem 3. Let \(J \) be any right (left) ideal of \(R \). Then either \(l(J) \neq 0 \) (\(r(J) \neq 0 \)) or \(J \) contains a two-sided essential ideal of \(R \).

Proof. By symmetry we may assume \(J \) is a right ideal. Suppose \(l(J) = 0 \). If \(A \) is an ideal of \(J \) such that \(A^2 = 0 \), then \((AJ)^2 \subseteq A^2 = 0 \). Since \(R \) is semiprime we have \(AJ = 0 \), i.e., \(A \subseteq l(J) \). Therefore \(A = 0 \) and so \(J \) is a semiprime ring. Similarly \(r(J)J^2 = 0 \) and \(r(J)J = 0 \), forcing \(r(J) = 0 \).

Let \(U \) be the largest two-sided ideal of \(R \) which is contained in \(J \). Suppose \(U \) is not an essential ideal of \(R \). Then there is a nonzero ideal \(V \) such that \(UV = 0 \), \(V \cap J \neq 0 \), otherwise \(JV = 0 \), leading to \(VJ = 0 \), contradicting \(l(J) = 0 \). By Theorem A, applied to the semiprime ring \(J \) (and also using Lemma 1), \(V \cap J \cap C \neq 0 \). Picking \(0 \neq \lambda \in V \cap J \cap C \), we obtain an ideal \(U + \lambda R \) of \(R \) lying in \(J \) and properly containing \(U \).

Theorem 1 and Theorem 3 together immediately imply.
Theorem 4. Let J be an essential one-sided ideal of R. Then J contains an essential two-sided ideal of R.

The following theorem answers conjecture II.

Theorem 5. Q coincides with the maximal left quotient ring of R.

Proof. Utumi has shown [5, p. 145, Theorem 3.3] that if both singular ideals of R are zero, then the maximal right and left quotient rings coincide if and only if for every nonessential right (left) ideal J of R the left (right) annihilator of J is nonzero. But Theorem 3 precisely assures these conditions.

We recall from Lemma 1 that if J is a right ideal of R then $J \cap C$ is in fact the center of the ring J and is an ideal of C.

Theorem 6. A right ideal J is essential in R if and only if $J \cap C$ is essential in C.

Proof. If J is essential in R then by Theorem 4 J contains an essential 2-sided ideal U of R. If $\lambda \neq 0 \in C$, λU is a nonzero ideal of R since U is essential. By Theorem A, $0 \neq \lambda u \in C$ for some $u \in U$. Suppose $\lambda (J \cap C) = 0$. Then $\lambda (U \cap C) = 0$, and in particular $(\lambda u)^2 = u\lambda (\lambda u) = 0$, a contradiction. Hence $\lambda (J \cap C) \neq 0$ and so $J \cap C$ is essential in C.

Conversely, if $J \cap C$ is essential in C, let U be the ideal of R generated by $J \cap C$. Suppose $r(U) \neq 0$. By Theorem A pick $0 \neq \lambda \in r(U) \cap C$. But then $(J \cap C) \lambda = 0$, a contradiction and so $r(U) = 0$. Thus U and hence J (which contains U) is essential in R.

Finally, we reprove some results due to Herstein and Small [3, p. 328, Theorems 2 and 3].

Theorem 7. If $l(a) = 0$, then a is regular, aR and Ra are essential right and left ideals, and a is invertible in Q.

Proof. By Theorem 3, aR contains an essential ideal U of R and thus aR is essential. Since Q is (von Neumann) regular there exists $q \in Q$ such that $aq = a$. Thus $(aq - 1)aR = 0$ and so $aq = 1$, since aR is essential. Suppose $qa \neq 1$. It is easily checked that $e_{ij} = q(1 - qa)a^j$, $i, j = 1, 2, \ldots$, is an infinite set of matrix units in Q. But this cannot occur, since Q is a P.I. algebra by Theorem 2. Hence $qa = 1$, which implies that a is regular and that Ra is an essential left ideal of R.

Acknowledgments. This is a revised version of our original paper.

The referee pointed out that the proof of Theorem 2 can be adapted to yield the result that any polynomial identity satisfied by an essential right ideal of a semiprime P.I. ring R must also be satisfied by R. He also indicated the connection between essential right ideals of R and essential ideals of the center, and we carried out these suggestions in Theorem 6.
The proof of Theorem 3 was somewhat shortened following a suggestion by S. Steinberg. The latter also indicated that a more self-contained proof could be given for Theorem 5, without recourse to Utumi's paper but making use of Theorem 6. An error in our original proof of Theorem 7 was rectified by E. P. Armendariz. Finally we are indebted to the National Science Foundation, which partially supported the research involved in this paper (GP-12090).

REFERENCES

Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01002