Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On semiprime P. I. rings


Author: Wallace S. Martindale
Journal: Proc. Amer. Math. Soc. 40 (1973), 365-369
MSC: Primary 16A38
DOI: https://doi.org/10.1090/S0002-9939-1973-0318215-3
MathSciNet review: 0318215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main results proved in this paper are that if $ R$ is a semiprime ring satisfying a polynomial identity then (1) the maximal right quotient ring of $ R$ is also P.I. and (2) every essential one-sided ideal of $ R$ contains an essential two-sided ideal of $ R$.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Fisher, Structure of semiprime P.I. rings, Proc. Amer. Math. Soc. 39 (1973), 465-467. MR 0320049 (47:8590)
  • [2] E. Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129-132. MR 0302689 (46:1833)
  • [3] I. N. Herstein and L. W. Small, Regular elements in P.I. rings, Pacific J. Math. 36 (1971), 327-330. MR 43 #7466. MR 0281751 (43:7466)
  • [4] L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223. MR 0309996 (46:9099)
  • [5] Y. Utumi, Rings whose one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141-147. MR 26 #137. MR 0142568 (26:137)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38

Retrieve articles in all journals with MSC: 16A38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0318215-3
Keywords: Semiprime P.I. ring, maximal right quotient ring, essential right ideal
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society