Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On compact operators in the weak closure of the range of a derivation


Author: Hong W. Kim
Journal: Proc. Amer. Math. Soc. 40 (1973), 482-486
MSC: Primary 47B47; Secondary 46L10
DOI: https://doi.org/10.1090/S0002-9939-1973-0318956-8
MathSciNet review: 0318956
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if $ K$ is a compact operator which commutes with a bounded operator $ A$ on a Hilbert space $ H$ and if $ K$ is contained in the weak closure of the range of the derivation induced by $ A$, then $ K$ is quasinilpotent.


References [Enhancements On Off] (What's this?)

  • [1] J. Anderson, Derivation ranges and the identity (to appear). MR 0322518 (48:880)
  • [2] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, ``Nauka", Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R.I., 1969. MR 36 #3137; 39 #7447. MR 0246142 (39:7447)
  • [3] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [4] M. Heins, Complex function theory, Pure and Appl. Math., vol. 28, Academic Press, New York, 1968. MR 39 #413. MR 0239054 (39:413)
  • [5] D. C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc. 8 (1957), 535-536. MR 19, 435. MR 0087914 (19:435d)
  • [6] C. Pearcy, Some unsolved problems on operator theory, Studies in Operator Theory, Math. Assoc. Amer. (to appear).
  • [7] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR 15, 132; 17, 175. MR 0056821 (15:132d)
  • [8] F. V. Širokov, Proof of a conjecture of Kaplansky, Uspehi Mat. Nauk 11 (1956), no. 4 (70), 167-168. (Russian) MR 19, 435. MR 0087913 (19:435c)
  • [9] J. G. Stampfli, Derivations on $ B(H)$: The range (to appear).
  • [10] J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279. MR 0308809 (46:7923)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B47, 46L10

Retrieve articles in all journals with MSC: 47B47, 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0318956-8
Keywords: Range of a derivation, eigenvalues, quasinilpotent operators, norm closure, weak operator topology, commutant of an operator, compact operator
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society