Metric inequalities and convexity
Author:
Dorothy Wolfe
Journal:
Proc. Amer. Math. Soc. 40 (1973), 559-562
MSC:
Primary 52A05
DOI:
https://doi.org/10.1090/S0002-9939-1973-0319045-9
MathSciNet review:
0319045
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Conditions that a given point of a normed linear space is (or is not) a convex combination of fixed points are given in terms of the metric. The point is said to be metrically dependent if the conditions hold.
- [1] R. G. Bilyeu, Metric definition of the linear structure, Proc. Amer. Math. Soc. 25 (1970), 205-206. MR 41 #4200. MR 0259562 (41:4200)
- [2] Marshall Hall, Jr., Combinatorial theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80. MR 0224481 (37:80)
- [3] Frederick A. Valentine, Convex sets, McGraw-Hill Series in Higher Math., McGraw-Hill, New York, 1964. MR 30 #503. MR 0170264 (30:503)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A05
Retrieve articles in all journals with MSC: 52A05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1973-0319045-9
Keywords:
Normed linear space,
metric space,
convex combinations,
extreme points
Article copyright:
© Copyright 1973
American Mathematical Society