SOME PATHOLOGY INVOLVING PSEUDO /-GROUPS AS GROUPS OF DIVISIBILITY

JORGE MARTINEZ

Abstract. In a partially ordered abelian group G, two elements a and b are pseudo-disjoint if $a, b \geq 0$ and either one is zero, or both are strictly positive and each o-ideal which is maximal with respect to not containing a contains b, and vice versa. G is a pseudo lattice-group if every element of G can be written as a difference of pseudo-disjoint elements.

We prove the following theorem: suppose G is an abelian pseudo lattice-group; if there is an $x > 0$ and a finite set of pairwise pseudo-disjoint elements x_1, x_2, \ldots, x_k all of which exceed x, and in addition this set is maximal with respect to the above properties, then G is not a group of divisibility.

The main consequence of this result is that every so-called "c-group" $V(\Lambda, R)$ for a given partially ordered set Λ, and where R_Λ is a subgroup of the additive reals in their usual order, is a group of divisibility only if Λ is a root system, and hence $V(\Lambda, R)$ is a lattice-ordered group. We do give examples of pseudo lattice-groups which are not lattice-groups, and yet are groups of divisibility.

Finally, we compute for each integral domain D whose group of divisibility is a lattice-group, the group of divisibility of the polynomial ring $D[x]$ in one variable.

1. Preliminaries. All groups in this paper are abelian, and in additive notation unless otherwise indicated. An integral domain here shall be a commutative ring with identity and no zero divisors. If D is an integral domain and K is its quotient field, then the group of divisibility of D is the multiplicative group of nonzero elements of K modulo the group $U(D)$ of units of D; in symbols $G(D) \cong K^*/U(D)$. This group can be given a directed partial order by setting $xU(D) \leq yU(D)$ if $yx^{-1} \in D$. A (directed) p.o. group G is called a group of divisibility if there is an integral domain D such that $G \cong G(D)$. We can also view this concept in terms of semi-valuations: let K be a field, G be a directed p.o. group, and $v: K^* \to G$...
be a mapping onto G satisfying
(i) $v(xy) = v(x) + v(y)$, for all $x, y \in K^*$;
(ii) $v(-1) = 0$;
(iii) $v(x+y) \geq g$ if $v(x), v(y) \geq g$, with $x, y \in K^*$ and $g \in G$.
Such a mapping is called a semivaluation. Let $D = \{x \in K^* | v(x) \geq 0\}$; then D is a subring of K, K is its quotient field and $G \cong G(D)$. Conversely, if D is an integral domain and K is its quotient field, then the canonical mapping $K^* \to G(D)$ is a semivaluation (see [5, p. 8]; also [9, p. 1148]). Consequently, G is a group of divisibility if and only if there is a semi-
valuation onto G.

If G is a totally ordered group (abbreviation o-group), the map v is
called a valuation, and Krull [6, p. 164] demonstrated that every o-group
is a group of divisibility. Jaffard [4, p. 264] then showed that all lattice-
groups (abbreviation l-groups) are groups of divisibility.

In a p.o. group a directed, convex subgroup is called an o-ideal. Suppose
G is a p.o. group and $0 \leq a, b \in G$; a and b are pseudo-disjoint if either is
zero, or both are strictly positive, and every o-ideal which is maximal
with respect to not containing a contains b, and vice versa. A pseudo
lattice-group (abbreviation pseudo l-group) is a p.o. group in which every
element can be written as the difference of two pseudo-disjoint elements.
For the basic material concerning pseudo l-groups we refer the reader to
[1] and [3]. Conrad shows in [1] that in a pseudo l-group G, $0 \leq a, b \in G$
are pseudo-disjoint if and only if $c \leq a, b$ implies that $nc \leq a, b$ for each
positive integer n.

For a given partially ordered set Λ, and each $\lambda \in \Lambda$, let R_λ be a subgroup
of the additive real numbers equipped with the usual order. Form $V(\Lambda, R_\lambda)$: the subgroup of the cartesian product of the R_λ over Λ consisting of the
"vectors" $v = (\cdots, v_1, \cdots)$ whose supports have no infinite ascending
chains. $V(\Lambda, R_\lambda)$ becomes a p.o. group by setting $0 < v = (\cdots, v_1, \cdots)$
if $v_\lambda > 0$ for each maximal component λ of the support of v. Then $V(\Lambda, R_\lambda)$ is a pseudo l-group (see Theorem 4.8 in [1]), and every pseudo l-group
may be embedded in some $V(\Lambda, R_\lambda)$ so as to preserve pseudo-disjointness
(see 4.11 in [1]). It is well known that $V(\Lambda, R_\lambda)$ is an l-group if and only
if Λ is a root system: $\{\lambda \in \Lambda | \lambda \geq \lambda_0\}$ is a chain for each $\lambda_0 \in \Lambda$. Finally, two elements $0 < v, w \in V(\Lambda, R_\lambda)$ are pseudo-disjoint if and only if no
maximal component of the support of v is comparable to one in the
support of w [1, p. 214].

2. The main theorem. We state our main result at the outset.

Theorem A. Suppose G is a pseudo l-group, and there is an element
$0 < x \in G$ and a set x_1, x_2, \cdots, x_k of pairwise pseudo-disjoint elements
all of which exceed x, and suppose further that this set is maximal with
respect to the above properties. Then G is not a group of divisibility.
The proof depends on two lemmas, one rather interesting in its own right, the other rather technical.

Lemma 1. Suppose G is a pseudo l-group, and v is a semivaluation from a field K upon G. If $0 < a, b \in G$ are pseudo-disjoint and $0 < c < a, b$, then there is an element $0 < g \in G$, pseudo-disjoint to a and b, with $c < g$.

Proof. Let $v(x) = a$, $v(y) = b$ and $g = v(x + y)$. If $c \leq a$, then $c \leq v(-x)$, so that $b = v(y) = v(x + y - x) \leq c$. But a and b are pseudo-disjoint and hence $nc \leq a, b$, for any positive integer n. Again using one of the defining properties of semivaluations $nc \leq g$. Conclusion: a and g are pseudo-disjoint; likewise b and g are pseudo-disjoint. It is clear that if $c < a, b$ then $c < g$; in particular $g > 0$.

If G is a pseudo l-group and $0 \neq x \in G$ we call an o-ideal M of G which is maximal with respect to not containing x a value of x. In this language then, a is pseudo-disjoint to b if and only if every value of a contains b, and vice versa.

Lemma 2. Suppose G is a pseudo l-group and $0 < a \in G$, $0 < b_{i} \in G$ $(i=1, \ldots, k)$. Assume further that the b_{i} are pairwise pseudo-disjoint, while a is pseudo-disjoint to $b_{1} + b_{2} + \cdots + b_{k}$. Then a is pseudo-disjoint to each b_{i}.

Proof. Let M be a value of a; then by our assumption $b_{1} + b_{2} + \cdots + b_{k}$ is in M, and so by convexity each $b_{i} \in M$. On the other hand if N is a value of b_{i}, each $b_{j} \in N$, for $j \neq i$; this makes N a value of $b_{1} + b_{2} + \cdots + b_{k}$, and hence $a \in N$. It follows then that each b_{i} is pseudo-disjoint to a.

Proof of Theorem A. Suppose G is a pseudo l-group, $0 < x \in G$ and $x_{1}, x_{2}, \ldots, x_{k}$ is a maximal, pairwise pseudo-disjoint set of elements of G exceeding x. Relabel $x_{1} = a$ and $b = x_{2} + x_{3} + \cdots + x_{k}$; then a and b are pseudo-disjoint.

If G is a group of divisibility as well, there is semivaluation v from a field K onto G. By Lemma 1 we may find $0 < g \in G$ pseudo-disjoint to both a and b, such that $x < g$. By Lemma 2 g is pseudo-disjoint to each x_{i} $(i=1, \ldots, k)$; this contradicts the maximality of the set $x_{1}, x_{2}, \ldots, x_{k}$ over x.

This proves the theorem.

Our first corollary concerns v-groups.

Theorem B. Let Λ be a partially ordered set, R_{λ} be an ordered subgroup of the reals for each $\lambda \in \Lambda$; set $V = V(\Lambda, R_{\lambda})$. If V is a group of divisibility then Λ is a root system and hence V is an l-group.
Proof. If \(\Lambda \) is not a root system there exists a \(\nu \in \Lambda \) with pairwise incomparable elements above \(\nu \) in \(\Lambda \). Let \(\{ \lambda_i | i \in I \} \) be a set of mutually incomparable elements of \(\Lambda \) all of which exceed \(\nu \), and suppose \(\{ \lambda_i | i \in I \} \) is also maximal with respect to these properties. Fix \(j \in I \) and define \(a, b \in \nu \) as follows:

\[
\begin{align*}
a_\lambda &= 1, & \text{if } \lambda = \lambda_j, \\
b_\lambda &= 1, & \text{if } \lambda = \lambda_i, \; i \neq j, \\
&= 0, & \text{otherwise}.
\end{align*}
\]

Clearly \(0 < a, b \in \nu \) and \(a \) is pseudo-disjoint to \(b \); moreover the pair \(\{a, b\} \) satisfies the conditions of Theorem A relative to, say, \(x \in \nu \), where

\[
\begin{align*}
x_\lambda &= 1, & \text{if } \lambda = \nu, \\
&= 0, & \text{otherwise}.
\end{align*}
\]

By the theorem we obtain a contradiction: for if there is an element \(0 < g \in G \), pseudo-disjoint to both \(a \) and \(b \) which exceeds \(x \), then we contradict the maximality of the set \(\{ \lambda_i | i \in I \} \) over \(\nu \). Thus \(\nu \) cannot be a group of divisibility unless \(\Lambda \) is a root system.

If \(G \) is a pseudo \(l \)-group and \(0 < u \in G \) has the property that no strictly positive element is pseudo-disjoint to \(u \), we call \(u \) a weak order unit.

Corollary 1. Suppose the pseudo \(l \)-group \(G \) has a weak order unit \(u \) which can be written as the sum of a pair of pseudo-disjoint elements which are not disjoint. Then \(G \) is not a group of divisibility.

Proof. Write \(u = a + b \) with \(a, b > 0 \) in \(G \) as prescribed in the statement of the corollary, and suppose \(0 < c < a, b \). Then \(\{a, b\} \) is a maximal pseudo-disjoint set over \(c \), and Theorem A applies.

Let \(G \) be a p.o. group and \(A \) be an \(o \)-ideal of \(G \). We call \(G \) a lex-extension of \(A \) (by \(G/A \)) if for each \(0 < a \in A \) and \(0 < g \in G \\backslash A \), \(g > a \). \(G \) is a direct lex-extension of \(A \) if \(A \) is a direct summand: equivalently, \(G = B \oplus A \) and \(0 \leq g = (b, a) \) if and only if \(b > 0 \), or \(b = 0 \) and \(a \geq 0 \). We then write \(G = B \bar{x} A \). If \(A \) and \(B \) are \(l \)-groups then \(G = B \bar{x} A \) is a pseudo \(l \)-group [3], and under these assumptions \(G \) is an \(l \)-group if and only if \(A = 0 \) or \(B \) is an \(o \)-group.

Call a weak order unit \(u \) in an \(l \)-group \(B \) decomposable if \(u \) can be written as a sum of pairwise disjoint, strictly positive elements of \(B \).

Corollary 2. Let \(A \neq 0 \) and \(B \) be \(l \)-groups, and suppose that \(B \) has a decomposable weak unit. Then \(G = B \bar{x} A \) is not a group of divisibility.

We compare our last corollary with Ohm's theorem 5.3 in [8]. Consider his condition labeled (5.1): there exist \(b_1, b_2 \in B \) such that \(b_1 \) and \(b_2 \) are

\[\text{1 We may assume without loss of generality that the number 1 is in each } R_A.\]
incomparable, and a subdirect representation of B as a subdirect product of o-groups B_i ($i \in I$) by an l-isomorphism σ such that $b_1\sigma_i \not= b_2\sigma_i$, for all $i \in I$. It is equivalent to the existence of a decomposable weak order unit in B.

To see this note that if Ohm's (5.1) holds for an l-group B, and b_1 and b_2 are as specified above, then if we set $u = (b_1 - b_2)v_0 + (b_2 - b_1)v_0$, u is a decomposable weak order unit. For $u\sigma_i = (b_1 - b_2)\sigma_i v_0 + (b_2 - b_1)\sigma_i v_0$, and so $u\sigma_i = (b_1 - b_2)\sigma_i$ or $(b_2 - b_1)\sigma_i$, either of which is > 0. Hence u is a weak order unit, and it is clearly decomposable.

Conversely, suppose B has a decomposable weak order unit u, and $u = a + b$, with $0 < a, b \in B$ and $a \land b = 0$. If a minimal prime subgroup N of B contains u then by the minimality of N there exists an element $0 < x \in B \setminus N$ such that $x \land u = 0$, a contradiction. Consider then the family $\{N_\lambda | \lambda \in \Lambda\}$ of minimal prime subgroups of B; let $B_\lambda = B/N_\lambda$ and $\sigma : B \to \prod B_\lambda$ be the induced l-embedding. Each B_λ is an o-group and $u\sigma_\lambda > 0$, for each $\lambda \in \Lambda$. Let $b_1 = a - b$ and $b_2 = 0$; then this pair satisfies Ohm's condition relative to the mapping σ. (We refer the reader to [2, pp. 1.14-1.15 and pp. 2.13-2.14].)

His Theorem 5.3 is somewhat more general than Corollary 2 in view of the fact that we assume A to be an l-group, whereas he does not.

Following Corollary 3.3 in [8] Ohm remarks that if one takes the polynomial ring $k[x, y]$ in two indeterminates over the field k, and localizes by the ideal generated by x and y, one obtains a local ring whose group of divisibility is a cardinal sum of copies of Z, the integers in their usual order; the number of copies of Z is at least 2 since the local ring is not a valuation ring. If G is then the group of divisibility of a domain D whose quotient field is k, Corollary 3.3 in [8] shows that the direct lex-extension of G by this cardinal sum of integers is again a group of divisibility. If G is an l-group such a lex-extension is a pseudo l-group which is not an l-group, providing a large class of examples of such pseudo l-groups which are groups of divisibility. In view of the observation in §1 that every pseudo l-group can be embedded in a reasonably “nice” way in a v-group, the examples here contrasted with Theorem B leave a rather monstrous question mark as to the nature of groups of divisibility, not only in the context of pseudo l-groups, but in general as well.

3. Polynomial rings and Gauss' lemma. We conclude this note with a result that calculates for an integral domain D whose group of divisibility is an l-group, the group of divisibility of its polynomial ring $D[x]$ in one variable. Curiously, an analogue of the classical Gauss lemma for

\[^2\text{In view of Theorem A there are infinitely many copies of } Z \text{ in these cardinal sums.}\]
polynomials crops up at a rather crucial juncture. First, a general preliminary remark:

Proposition. Let \(D \) be an integral domain, \(G \) be its group of divisibility; then \(G(D[x]) \) is a direct extension of \(G \) by a cardinal sum of copies of \(Z \).

Proof. Let \(k \) be the quotient field of \(D \). We note here that the group of units \(U(D) \) of \(D \) is also the group of units of \(D[x] \). Further \(D[x] \) and \(k[x] \) have same quotient field, namely \(k(x) \), the field of rational functions in \(x \) with coefficients in \(k \). Finally, the group of units of \(k[x] \) is \(k^* \). Thus

\[
G = k^*/U(D), \quad G(D[x]) = (k(x))^*/U(D), \quad \text{and} \quad G(k[x]) = k(x)^*/k^*,
\]

and the latter is a cardinal sum of integers; see [7, Theorem 4.3]. Clearly, the inclusion of \(G \) in \(G(D[x]) \) is a convex order embedding, and the canonical epimorphism \(G(D[x]) \to G(k[x]) \) is an \(\sigma \)-epimorphism. Hence \(G(D[x])/G \cong G(k[x]) \); since \(G(k[x]) \) is abstractly a free abelian group, the extension is direct.

Now suppose \(G = G(D) \) is an \(\ell \)-group; then \(D \) has the following properties:

1. any finite set of nonzero elements of \(D \) has a greatest common divisor, and
2. if \(d \) divides \(ab \) (\(a, b, d \in D \)) then \(d = xy \) where \(x \) divides \(a \) and \(y \) divides \(b \). This is so because \(G \), being an \(\ell \)-group, satisfies the Riesz interpolation property: if \(0 \leq a_1, a_2 \in G \) and \(0 \leq b \in G \), then \(b \leq a_1 + a_2 \) implies that \(b = b_1 + b_2 \), with \(0 \leq b_1 \leq a_i \) (\(i = 1, 2 \)).

Call a polynomial \(p(x) \) in \(D[x] \) primitive if the greatest common divisor of the coefficients of \(p(x) \) is a unit of \(D \). If \(G \) is an \(\ell \)-group any polynomial \(g(x) \in D[x] \) can be written uniquely (up to units) as \(g(x) = d \cdot g_0(x) \), where \(g_0(x) \) is primitive and \(d \) is the greatest common divisor of the coefficients of \(g(x) \).

The following is a crucial lemma.

Lemma 3 (Gauss' Lemma). If the group of divisibility \(G \) of an integral domain \(D \) satisfies the Riesz interpolation property, the product of two primitive polynomials in \(D[x] \) is primitive.

Proof. Let \(p(x) = a_0 + a_1 x + \cdots + a_m x^m \) and \(q(x) = b_0 + b_1 x + \cdots + b_n x^n \) be primitive polynomials, and \(p(x)q(x) = c_0 + c_1 x + \cdots + c_{m+n} x^{m+n} \). Suppose \(d \in D \) divides all \(c_k \), and is not a unit. Let \(i_0 \) (\(j_0 \)) be the first index such that \(d \) fails to divide \(a_{i_0} (b_{j_0}) \); set \(k_0 = i_0 + j_0 \). Then \(d \) divides \(c_{k_0} = a_{i_0} b_{j_0} + \cdots + a_{i_0} b_{j_0} + \cdots + a_{k_0} b_{j_0} \), and so \(d \) divides \(a_{i_0} b_{j_0} \). Since \(G \) satisfies the Riesz interpolation property \(d = x_0 y_0 \) where \(x_0 \) (\(y_0 \)) divides \(a_{i_0} (b_{j_0}) \). Now \(x_0 \) divides each \(c_k \), each \(a_i \) for \(i = 0, 1, \ldots, i_0 \) and each \(b_j \) for \(j = 0, 1, \ldots, j_0 - 1 \).
By induction, x_0 is a unit and so d divides b_{i_0}, which is a contradiction. We conclude that $p(x)q(x)$ is primitive, and the lemma is proved.

Theorem C. If the group of divisibility G of the integral domain D is an l-group, then $G(D[x])$ is a cardinal sum of G with a cardinal sum of copies of Z; in particular $G(D[x])$ is an l-group.

Proof. Recall that a saturated multiplicative system of an integral domain is a subset of nonzero elements, closed under multiplication, which contains along with an element d all the divisors of d. Mott (see [7, Theorem 5.1]) showed that there is a natural isomorphism between the lattice of saturated multiplicative systems of an integral domain and the o-ideals of its group of divisibility.

Lemma 3 says that the subset S of primitive polynomials in $D[x]$ is multiplicative; it is clearly saturated. Also, the nonzero elements of D form a multiplicative system in $D[x]$ which is saturated; denote this subset by D^*. Since G is an l-group we may write every nonzero polynomial $f(x)$ as a product of an element from D^* and an element of S; evidently $S \cap D^* = U(D)$. By Mott's Theorem (and the logical extension thereof) there exist o-ideals A and B of $G(D[x])$ such that $G(D[x])$ is the cardinal sum of A and B; if A corresponds to D^* then clearly $A \cong G$, and it is immediate that B (corresponding to S) is isomorphic to $G(k[x])$. This concludes the proof of Theorem C.

We offer the following remark in the way of a converse of Theorem C. Let D be an integral domain and G be its group of divisibility. Without any further assumptions G is an o-ideal of $G(D[x])$; so suppose it splits off cardinally. Then $G(D[x]) = G \uplus M$, where M is an o-ideal of $G(D[x])$; using Mott's correspondence again we come up with a saturated multiplicative system T in $D[x]$ having the properties that (1) $D^* \cap T = U(D)$ and (2) every nonzero polynomial $f(x)$ can be written (uniquely up to units) as the product of an element of D^* and one from T. Now let S be the set of primitive polynomials; clearly $S \subseteq T$, and if $p(x) \in T$ but is not primitive, then write $p(x) = d \cdot q(x)$, and pick d to be a nonunit of D. Since T is saturated $q(x) \in T$, but this violates the uniqueness of such expressions. Hence $T = S$.

Moreover pick $0 \neq a, b \in D$ and consider $f(x) = a + bx$; by writing $f(x)$ as a product of an element from D^* and an element from S we locate the greatest common divisor of a and b. We can therefore make the following conclusion.

Theorem D. Let G be the group of divisibility of the integral domain D; let $H = G(D[x])$. If H is the cardinal sum of G and $G(k[x])$ then

1. any finite set of nonzero elements of D has a greatest common
divisor, and

(2) the subset \(S \) of primitive polynomials over \(D \) is a saturated multiplicative system.

If \(G \) satisfies the Riesz interpolation property it is an \(l \)-group.

Finally, in view of Theorem C conditions (1) and (2) are sufficient to insure that \(G \) split as a cardinal summand of \(H \).

In closing we pose one of many questions that arise naturally here: if \(G = G(D) \) satisfies the Riesz interpolation property, then does \(G(D[x]) \)?

Bibliography

2. ———, *Lattice ordered groups*, Tulane University, New Orleans, La., 1970.

Department of Mathematics, University of Florida, Gainesville, Florida 32601