IDENTITIES FOR SERIES OF THE TYPE \(\sum f(n)\mu(n)n^{-s} \)

TOM M. APOSTOL

Abstract. Identities are obtained relating the series of the title with \(\sum f(n)\mu(n)\mu(p, n)n^{-s} \) where \(f \) is completely multiplicative, \(|f(n)| \leq 1 \), and \(p \) is prime. Applications are given to vanishing subseries of \(\sum \mu(n)/n \).

\[
\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0,
\]

where \(\mu(n) \) is the Möbius function. Landau [5] later showed that (1) is equivalent to the prime number theorem. Kluyver [2] described a method for evaluating subseries of (1) of the form

\[
\sum_{m=0}^{\infty} \frac{\mu(mb + h)}{mb + h},
\]

where \(0 < h \leq b \), although he did not prove convergence of these subseries. Landau [4] proved convergence and expressed the subseries (2) as a linear combination of reciprocals of Dirichlet \(L \)-functions.

The results of Landau and Kluyver imply the formulas

\[
\sum_{n=1; n=0 \mod p}^{\infty} \frac{\mu(n)}{n} = 0, \quad \sum_{n=1; n \neq 0 \mod p}^{\infty} \frac{\mu(n)}{n} = 0,
\]

for every prime \(p \). In this note we obtain some identities for Dirichlet series, one of which gives a new proof of (3).

Theorem 1. For any prime \(p \) and any complex \(s=\sigma+it \) with \(\sigma \geq 1 \) we have

\[
(1 + p^{-s}) \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = (1 - p^{-s}) \sum_{n=1}^{\infty} \frac{\mu(n)\mu(p, n)}{n^s},
\]

where \(\mu(p, n) \) denotes the Möbius function evaluated at the g.c.d. of \(p \) and \(n \).

Received by the editors January 15, 1973.

Key words and phrases. Dirichlet series, Möbius function.
Since
\[\mu(p, n) = \begin{cases} 1 & \text{if } p \nmid n, \\ -1 & \text{if } p \mid n, \end{cases} \]
the relations in (3) follow by taking \(s = 1 \) in (4) and using (1).

A special case of Theorem 1 with \(p = 2 \) was recently discovered by Tord Hall [1]. Although Hall's method can be adapted to prove Theorem 1, the proof given here seems more natural. It is based on the following property of the Möbius function.

Lemma 1. For every prime \(p \) we have
\[\sum_{d \mid n} \mu(d) \mu(p, d) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n = p^a, \ a \geq 1, \\ 0 & \text{otherwise}. \end{cases} \]

2. **Proof of Lemma 1.** If \(n = 1 \) the proof is immediate. If \(n > 1 \) we have
\[\sum_{d \mid n} \mu(d) \mu(p, d) = \sum_{d \mid n : p \nmid d} \mu(d) - \sum_{d \mid n : p \mid d} \mu(d) = \sum_{d \mid n} \mu(d) - 2 \sum_{d \mid n : p \mid d} \mu(d) = -2 \sum_{d \mid n : p \mid d} \mu(d), \]
since \(n > 1 \). If \(p \nmid n \) the last sum is empty and hence equals zero. If \(p \mid n \) then \(n = p^a q \) where \(a \geq 1, \ (q, p) = 1, \ q > 1 \). Every divisor of \(n \) divisible by \(p \) has the form \(p^t \delta \) where \(1 \leq t \leq a \) and \(\delta \mid q \). Hence the last sum is
\[-2 \sum_{t=1}^{a} \sum_{\delta \mid q} \mu(p^t \delta) = -2 \sum_{\delta \mid q} \mu(p \delta) = 2 \sum_{\delta \mid q} \mu(\delta) = 2 \quad \text{if } q = 1, \]
\[= 0 \quad \text{if } q > 1. \]

This proves Lemma 1.

3. **Proof of Theorem 1.** The sum in Lemma 1 is the coefficient of \(n^{-s} \) in the Dirichlet series obtained by multiplying \(\sum \mu(n) \mu(p, n)n^{-s} \) by \(\zeta(s) = \sum n^{-s} \). Therefore if \(s > 1 \) we have
\[\zeta(s) \sum_{n=1}^{\infty} \frac{\mu(n) \mu(p, n)}{n^s} = 1 + 2 \sum_{a=1}^{\infty} \frac{1}{p^{as}}. \]

The Dirichlet series on the right of (5) is also a geometric series which converges absolutely for \(s > 0 \) and has sum
\[1 + 2p^{-s}/(1 - p^{-s}) = (1 + p^{-s})/(1 - p^{-s}). \]
Since \(\frac{1}{\zeta(s)} = \sum \mu(n)n^{-s} \), equation (5) is equivalent to (4) for \(\sigma > 1 \). Now the series \(\sum \mu(n)\mu(p,n)n^{-s} \) also converges for \(\sigma = 1 \) since it is the product of the Dirichlet series \(\sum \mu(n)n^{-s} \), convergent for \(\sigma \geq 1 \), and a Dirichlet series which converges absolutely for \(\sigma > 0 \). (See Landau [6, §185].) Therefore the identity in (4) is valid for \(\sigma \geq 1 \).

Theorem 1 can be extended as follows.

Theorem 2. Let \(f \) be a completely multiplicative function with \(|f(n)| \leq 1 \) for all \(n \geq 1 \). Then for any prime \(p \) and any complex \(s=\sigma+it \) with \(\sigma > 1 \) we have

\[
(1 + f(p)p^{-s}) \sum_{n=1}^{\infty} \frac{f(n)\mu(n)}{n^s} = (1 - f(p)p^{-s}) \sum_{n=1}^{\infty} \frac{f(n)\mu(n)\mu(p,n)}{n^s}.
\]

Moreover, if the series \(\sum f(n)\mu(n)n^{-s} \) converges for \(\sigma \geq c \) for some \(c \) with \(0 < c \leq 1 \), then (6) also holds for \(\sigma \geq c \).

Proof. If \(f(n) = 0 \) for all \(n \) the result holds trivially. If not, then \(f(1) = 1 \) and by Lemma 1 we have

\[
\sum_{d|n} f(d)\mu(d)\mu(p,d)f(n/d) = f(n) \sum_{d|n} \mu(d)\mu(p,d) = 1 \quad \text{if } n = 1,
\]

\[
= 2f(p)^a \quad \text{if } n = p^a, \quad a \geq 1,
\]

\[
= 0 \quad \text{otherwise}.
\]

This identity implies, for \(\sigma > 1 \),

\[
\left(\sum_{n=1}^{\infty} \frac{f(n)\mu(n)\mu(p,n)}{n^s} \right) \left(\sum_{n=1}^{\infty} \frac{f(n)}{n^s} \right) = 1 + 2 \sum_{a=1}^{\infty} \frac{f(p)^a}{p^{as}}.
\]

Since \(|f(n)| \leq 1 \), each Dirichlet series on the left converges absolutely for \(\sigma > 1 \), and the geometric series on the right converges absolutely for \(\sigma > 0 \) to the sum \((1+f(p)p^{-s})/(1-f(p)p^{-s}) \). Also, \(\sum_{n=1}^{\infty} f(n)n^{-s} \neq 0 \) for \(\sigma > 1 \) since it has an Euler product, and

\[
\left(\sum_{n=1}^{\infty} \frac{f(n)}{n^s} \right)^{-1} = \sum_{n=1}^{\infty} \frac{\mu(n)f(n)}{n^s}.
\]

The rest of the proof is like that of Theorem 1.

4. **Related results.** Sats 2 in Tord Hall’s paper is the special case \(p=2 \) of the following identity.

Theorem 3. For any prime \(p \) and \(s=\sigma+it \) with \(\sigma > 1 \), we have

\[
(1 - p^{-s}) \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = (1 + p^{-s}) \sum_{n=1}^{\infty} \frac{\mu(n)\mu(p,n)}{n^s}.
\]
This theorem can be proved by Hall's method or by use of the following arithmetical identity.

Lemma 2. For all $n \geq 1$ and any prime p we have

$$
\sum_{d|n} a(d) |\mu(n/d)| = \sum_{d|n} b(d) |\mu(n/d)| \mu(p, n/d),
$$

where

$$
a(n) = \begin{cases} 1 & \text{if } n = 1, \\ -1 & \text{if } n = p, \\ 0 & \text{otherwise,} \end{cases} \quad b(n) = \begin{cases} 1 & \text{if } n = 1, \\ 1 & \text{if } n = p, \\ 0 & \text{otherwise.} \end{cases}
$$

It is clear that Lemma 2 implies Theorem 3. To prove Lemma 2 we need only consider three cases: $n=1$; $n=pq$ with $(p,q)=1$; and $n=p^2q$. In all other cases each sum in (7) contains only the term $|\mu(n)|$, corresponding to $d=1$, the other terms being zero. If $n=1$ the result is trivial. If $n=pq$ with $(p,q)=1$, it is easily verified that each sum in (7) is zero. In the remaining case, $n=p^2q$, each sum is equal to $-|\mu(pq)|$.

By a similar argument, Lemma 2 implies the following extension of Theorem 3.

Theorem 4. Let f be completely multiplicative with $|f(n)| \leq 1$ for all n. Then for any prime p and any complex $s=\sigma+it$ with $\sigma>1$ we have

$$
(1 - f(p)p^{-s}) \sum_{n=1}^{\infty} \frac{f(n)|\mu(n)|}{n^s} = (1 + f(p)p^{-s}) \sum_{n=1}^{\infty} \frac{f(n)|\mu(n)| \mu(p, n)}{n^s}.
$$

Note. By differentiating (4) for $\sigma>1$, letting $s \to 1+$, and using the relation ([6, §159])

$$
\sum_{n=1}^{\infty} \frac{\mu(n) \log n}{n} = -1,
$$

we find that

$$
\sum_{n=1}^{\infty} \frac{\mu(n) \mu(p, n) \log n}{n} = \frac{p + 1}{p - 1}
$$

for every prime p. This implies that each of the following subseries of (8) converges to the sum indicated:

$$
\sum_{n=1; n \equiv 0 \pmod p}^{\infty} \frac{\mu(n) \log n}{n} = \frac{1}{p - 1}, \quad \sum_{n=1; n \equiv 0 \pmod p}^{\infty} \frac{\mu(n) \log n}{n} = \frac{p}{1 - p}.
$$

References

2. E. Landau, *Neuer Beweis der Gleichung* \(\sum_{k=1}^{\infty} \frac{\mu(k)}{k} = 0 \), *Inauguraldissertation*, Berlin, 1899.

Department of Mathematics, California Institute of Technology, Pasadena, California 91109