Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounded holomorphic functions in Siegel domains


Author: Su Shing Chen
Journal: Proc. Amer. Math. Soc. 40 (1973), 539-542
MSC: Primary 32H15
DOI: https://doi.org/10.1090/S0002-9939-1973-0322211-X
MathSciNet review: 0322211
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Siegel domain $ D$ of the second kind (not necessarily affine homogeneous) is shown to be complete with respect to the Carathéodory distance. Thus $ D$ is convex with respect to the bounded holomorphic functions, hence is a domain of holomorphy. A Phragmén-Lindelöf theorem for $ D$ is also given. That is, if a holomorphic function $ f$ in $ D$ is continuous in $ \bar D$, bounded on the distinguished boundary $ S$ of $ D$ and not of exponential growth, then $ f$ is bounded in $ \bar D$.


References [Enhancements On Off] (What's this?)

  • [1] S. Bochner and W. T. Martin, Several complex variables, Princeton Math. Studies, vol. 10, Princeton Univ. Press, Princeton, N.J., 1948. MR 10, 366. MR 0027863 (10:366a)
  • [2] S. Kaneyuki, Homogeneous bounded domains and Siegel domains, Lecture Notes in Math., vol. 241, Springer-Verlag, Berlin, 1971. MR 0338467 (49:3231)
  • [3] D. S. Kim, Boundedly holomorphic convex domains, Pacific J. Math. (to appear). MR 0344520 (49:9259)
  • [4] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Appl. Math., 2, Dekker, New York, 1970. MR 43 #3503. MR 0277770 (43:3503)
  • [5] A. Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332-350. MR 34 #371. MR 0200478 (34:371)
  • [6] I. I. Pjateckii-Šapiro, Géométrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966. MR 33 #5949.
  • [7] E. M. Stein, Boundary behaviour of holomorphic functions of several complex variables, Math. Notes, Princeton Univ. Press, Princeton, N.J., 1972. MR 0473215 (57:12890)
  • [8] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939. MR 33 #5850. MR 0197687 (33:5850)
  • [9] V. S. Vladimirov, Methods of the theory functions of many complex variables, ``Nauka", Moscow, 1964; MIT Press, Cambridge, Mass., 1966. MR 30 #2163; MR 34 #1551. MR 0201669 (34:1551)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H15

Retrieve articles in all journals with MSC: 32H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0322211-X
Keywords: Siegel domain, convexity with respect to $ B(M)$, Phragmén-Lindelöf theorem, Kobayashi distance, Carathéodory distance, domain of holomorphy, domain of bounded holomorphy
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society