Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Bounded holomorphic functions in Siegel domains


Author: Su Shing Chen
Journal: Proc. Amer. Math. Soc. 40 (1973), 539-542
MSC: Primary 32H15
MathSciNet review: 0322211
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Siegel domain $ D$ of the second kind (not necessarily affine homogeneous) is shown to be complete with respect to the Carathéodory distance. Thus $ D$ is convex with respect to the bounded holomorphic functions, hence is a domain of holomorphy. A Phragmén-Lindelöf theorem for $ D$ is also given. That is, if a holomorphic function $ f$ in $ D$ is continuous in $ \bar D$, bounded on the distinguished boundary $ S$ of $ D$ and not of exponential growth, then $ f$ is bounded in $ \bar D$.


References [Enhancements On Off] (What's this?)

  • [1] Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863
  • [2] Soji Kaneyuki, Homogeneous bounded domains and Siegel domains, Lecture Notes in Mathematics, Vol. 241, Springer-Verlag, Berlin-New York, 1971. MR 0338467
  • [3] Dong S. Kim, Boundedly holomorphic convex domains, Pacific J. Math. 46 (1973), 441–449. MR 0344520
  • [4] Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
  • [5] Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 0200478
  • [6] I. I. Pjateckii-Šapiro, Géométrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966. MR 33 #5949.
  • [7] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Mathematical Notes, No. 11. MR 0473215
  • [8] E. C. Titchmarsh, Han-shu lun, Translated from the English by Wu Chin, Science Press, Peking, 1964 (Chinese). MR 0197687
  • [9] Vasiliy Sergeyevich Vladimirov, Methods of the theory of functions of many complex variables, Translated from the Russian by Scripta Technica, Inc. Translation edited by Leon Ehrenpreis, The M.I.T. Press, Cambridge, Mass.-London, 1966. MR 0201669

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H15

Retrieve articles in all journals with MSC: 32H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0322211-X
Keywords: Siegel domain, convexity with respect to $ B(M)$, Phragmén-Lindelöf theorem, Kobayashi distance, Carathéodory distance, domain of holomorphy, domain of bounded holomorphy
Article copyright: © Copyright 1973 American Mathematical Society