CERTAIN SUBSETS OF PRODUCTS OF θ-REFINABLE SPACES ARE REALCOMPACT

PHILLIP ZENOR

Abstract. It is shown that the normal T_1-space X is realcompact if and only if (a) each discrete subset of X is realcompact and (b) X can be embedded as a closed subset in the product of a collection of regular θ-refinable spaces.

We will say that a space X has property (*) if it is true that each discrete subset of X is realcompact; i.e., the cardinality of each discrete subset of X is nonmeasurable. In [5], the author has shown that a normal T_1-space X is realcompact if and only if X has property (*) and X can be embedded as a closed subspace in the product of a collection of subparacompact spaces and metacompact spaces. S. Mrówka suggested to the author that there should be a nontrivial class of spaces \mathcal{P} containing the class of subparacompact spaces and the class of metacompact spaces so that a normal space X is realcompact if and only if X has property (*) and X can be embedded as a closed subspace in a product of members of \mathcal{P}. It is the purpose of this paper to show that the class of θ-refinable spaces, introduced by Worrell and Wicke in [4], is such a class.

Recall that a space X is θ-refinable if it is true that if \mathcal{V} is an open cover of X then there is a sequence $\mathcal{V}_1, \mathcal{V}_2, \cdots$ of open covers of X that refine \mathcal{V} such that if $x \in X$, then there is an integer i such that only finitely many members of \mathcal{V}_i contain x. Clearly, any metacompact space is θ-refinable. It is shown in [1] that any subparacompact space is θ-refinable.

Our notation will follow that of [2].

Lemma 1 [5]. Suppose that X is a T_1-space and \mathcal{E} is a class of T_3-spaces such that the topology on X is the weak topology induced by $C(X, \mathcal{E})$. Then X can be embedded as a closed subspace in the product of a collection of members of \mathcal{E} if and only if it is true that if \mathcal{F} is a free ultrafilter of closed subsets of X, then there are a member f of $C(X, \mathcal{E})$ and an open cover \mathcal{U} of range (f) such that $\{f^{-1}(U) : U \in \mathcal{U}\}$ refines $\{(X-F) : F \in \mathcal{F}\}$.

Lemma 2 (Theorem 18, [3]). If \mathcal{U} is an open cover of the space X, then
there is a discrete subspace \(H \) of \(X \) such that

(i) \(\{ \text{st}(x, U) : x \in H \} \) covers \(X \), and

(ii) no member of \(\mathcal{U} \) contains two points of \(H \).

Theorem. The following conditions on a normal \(T_1 \)-space \(X \) are equivalent:

1. \(X \) is realcompact.
2. \(X \) has property (*) and \(X \) can be embedded as a closed subset in the product of a collection of regular \(\theta \)-refinable spaces.
3. \(X \) has property (*) and if \(\mathcal{F} \) is a free ultrafilter of closed subsets of \(X \), then there is a sequence \(\mathcal{W}_1, \mathcal{W}_2, \ldots \) of open covers of \(X \) refining \(\{ X - F : F \in \mathcal{F} \} \) such that if \(x \in X \) then there is an integer \(i \) such that only finitely many members of \(\mathcal{W}_i \) contain \(x \).

Proof. (1) implies (2). This is obvious since every closed subset of a realcompact space is realcompact and the real line is \(\theta \)-refinable.

(2) implies (3). Let \(\mathcal{F} \) be a free ultrafilter of closed subsets of \(X \). According to Lemma 1, there are a \(\theta \)-refinable space \(Y \), an open cover \(\mathcal{V} \) of \(Y \), and a continuous function \(f \) taking \(X \) into \(Y \) such that \(f^{-1}(\mathcal{V}) = \{ f^{-1}(V) : V \in \mathcal{V} \} \) refines \(\{ X - F : F \in \mathcal{F} \} \). Since \(Y \) is \(\theta \)-refinable, there is a sequence \(\mathcal{V}_1, \mathcal{V}_2, \ldots \) of open covers of \(Y \) refining \(\mathcal{V} \) such that if \(y \in Y \), there is an integer \(i \) such that only finitely many members of \(\mathcal{V}_i \) contain \(y \). Clearly, if for each \(i \), \(\mathcal{W}_i = f^{-1}(\mathcal{V}_i) \), the sequence \(\mathcal{W}_1, \mathcal{W}_2, \ldots \) satisfies condition (3) of our theorem.

(3) implies (1). Suppose that \(X \) satisfies condition (3) but \(X \) is not realcompact. Let \(\mathcal{L} \) be a free \(\mathbb{Z} \)-ultrafilter in \(X \) with the countable intersection property. Let \(\mathcal{F} \) be the ultrafilter of closed subsets of \(X \) that contains \(\mathcal{L} \) (\(\mathcal{F} \) is uniquely determined by \(\mathcal{L} \) since \(X \) is normal). Let \(\mathcal{W}_1, \mathcal{W}_2, \ldots \) be a sequence of open covers of \(X \) refining \(\{ X - F : F \in \mathcal{F} \} \) such that if \(x \in X \) then there is an \(i \) such that only finitely many members of \(\mathcal{W}_i \) contain \(x \). For each pair \((i, j)\) of positive integers, let \(H(i, j) = \{ x \in X : x \text{ is contained in at most } j \text{ members of } \mathcal{W}_i \} \). It is easy to see that each \(H(i, j) \) is closed. Let \(\mathcal{H} \) denote collection of all \(H(i, j) \)'s. Let \(\mathcal{H}_x = \mathcal{H} - \mathcal{F} \) and \(\mathcal{H}_x = \mathcal{H} - \mathcal{H}_1 \). For each \(H \) in \(\mathcal{H}_1 \), let \(F(H) \) denote a member of \(\mathcal{F} \) that does not intersect \(H \). Since \(X \) is normal, there is a zero-set \(Z(H) \) containing \(F(H) \) that does not intersect \(H \). For each \(H \) in \(\mathcal{H}_1 \), \(Z(H) \) is in \(\mathcal{L} \). It must be the case that \(\mathcal{H}_2 \) is not empty; otherwise, \(\{ Z(H) : H \in \mathcal{H}_1 \} \) would be a countable subcollection of \(\mathcal{L} \) with no common part which would be a contradiction.

For each \(H = H(i, j) \) in \(\mathcal{H}_2 \), there is, by Lemma 2, a discrete subset \(K(H) \) of \(H \) such that no member of \(\mathcal{W}_i \) contains two members of \(K(H) \) and \(\{ \text{st}(x, W_i) : x \in K(H) \} \) covers \(H \). Note that \(K(H) \) is infinite for otherwise, the collection \(\{ W \in \mathcal{W}_i : W \cap K(H) \neq \emptyset \} \) would be finite and \(\bigcap \{ X - W : W \in \mathcal{W}_i, W \cap K(H) \neq \emptyset \} \) would be a member of \(\mathcal{F} \) that would
not intersect H and this would contradict the assumption that $H \in \mathcal{H}_2$. Let $\mathcal{W}' = \{ W \in \mathcal{W} : W \cap K(H) \neq \emptyset \}$. Since $K(H)$ is infinite and each point of H is contained in only finitely many members of \mathcal{W}', it must be true that the cardinality of $K(H)$ is the same as the cardinality of \mathcal{W}'. Let φ be a one-to-one function from $K(H)$ onto \mathcal{W}'. For each F in \mathcal{F}, let $M(F) = \{ x \in K(H) : \varphi(x) \cap (F \cap H) \neq \emptyset \}$. Clearly, $\{ M(F) : F \in \mathcal{F} \}$ has the finite intersection property; and so, there is an ultrafilter \mathcal{M} of subsets of $K(H)$ that contains $\{ M(F) : F \in \mathcal{F} \}$. Since, for each $x \in K(H)$, it is true that $X - \varphi(x) \in \mathcal{F}$, it is true that \mathcal{M} is a free ultrafilter of subsets of $K(H)$. Since $K(H)$ is a discrete subset of X, $K(H)$ is realcompact; and so, there is a countable subcollection $\{ M_i \}$ of members of \mathcal{M} with no common part.

Claim 1. If $M \in \mathcal{M}$, there is a member F of \mathcal{F} that is a subset of $\bigcup_{x \in M} \varphi(x)$.

The argument for this is the same as the argument for Claim 1 in the proof of the theorem in [5].

Claim 2. $[\bigcap_{i=1}^{\infty} (\bigcup_{x \in M_i} (\varphi(x)))] \cap H = \emptyset$.

Again, the argument for this is the same as the argument for Claim 2 in the proof of the theorem in [5].

By Claim 1, for each integer n, there is a member F_n of \mathcal{F} such that $F_n \subseteq \bigcup_{x \in M_n} (\varphi(x))$. Since X is normal, there is a zero-set Z_n such that $F_n \subseteq Z_n \subseteq \bigcup_{x \in M_n} (\varphi(x))$. It follows from Claim 2 that $\bigcap (Z_n \cap H) = \emptyset$. Thus, for each $H \in \mathcal{H}_2$ there is a countable subcollection $\mathcal{L}(H)$ of \mathcal{L} such that $[\bigcap_{Z \in \mathcal{L}(H)} (Z)] \cap H = \emptyset$. Thus, we have $\{ Z(H) : H \in \mathcal{H}_2 \} \cup (\bigcup_{H \in \mathcal{H}_2} \mathcal{L}(H))$ is a countable subcollection of \mathcal{L} with no common part which contradicts the assumption that \mathcal{L} has the countable intersection property.

Note. In [5], the author asked if every normal metacompact space is topologically complete (in the sense of Dieudonné). R. Haydon offers an example of a normal metacompact space which is not complete in [6].

References