CERTAIN SUBSETS OF PRODUCTS OF θ-REFINABLE SPACES ARE REALCOMPACT

PHILLIP ZENOR

Abstract. It is shown that the normal T_1-space X is realcompact if and only if (a) each discrete subset of X is realcompact and (b) X can be embedded as a closed subset in the product of a collection of regular θ-refinable spaces.

We will say that a space X has property (*) if it is true that each discrete subset of X is realcompact; i.e., the cardinality of each discrete subset of X is nonmeasurable. In [5], the author has shown that a normal T_1-space X is realcompact if and only if X has property (*) and X can be embedded as a closed subspace in the product of a collection of subparacompact spaces and metacompact spaces. S. Mrówka suggested to the author that there should be a nontrivial class of spaces \mathcal{P} containing the class of subparacompact spaces and the class of metacompact spaces so that a normal space X is realcompact if and only if X has property (*) and X can be embedded as a closed subspace in a product of members of \mathcal{P}. It is the purpose of this paper to show that the class of θ-refinable spaces, introduced by Worrell and Wicke in [4], is such a class.

Recall that a space X is θ-refinable if it is true that if \mathcal{V} is an open cover of X then there is a sequence $\mathcal{V}_1, \mathcal{V}_2, \ldots$ of open covers of X that refine \mathcal{V} such that if $x \in X$, then there is an integer i such that only finitely many members of \mathcal{V}_i contain x. Clearly, any metacompact space is θ-refinable. It is shown in [1] that any subparacompact space is θ-refinable.

Our notation will follow that of [2].

Lemma 1 [5]. Suppose that X is a T_1-space and \mathcal{E} is a class of T_3-spaces such that the topology on X is the weak topology induced by $C(X, \mathcal{E})$. Then X can be embedded as a closed subspace in the product of a collection of members of \mathcal{E} if and only if it is true that if \mathcal{F} is a free ultrafilter of closed subsets of X, then there are a member f of $C(X, \mathcal{E})$ and an open cover \mathcal{U} of range (f) such that $f^{-1}(U) : U \in \mathcal{U}$ refines $(X - F) : F \in \mathcal{F}$.

Lemma 2 (Theorem 18, [3]). If \mathcal{U} is an open cover of the space X, then

Received by the editors January 15, 1973.

Key words and phrases. Realcompact, θ-refinable.
there is a discrete subspace H of X such that

(i) $\{st(x, U) : x \in H\}$ covers X, and

(ii) no member of \mathcal{U} contains two points of H.

Theorem. The following conditions on a normal T_1-space X are equivalent:

1. X is realcompact.
2. X has property (*) and X can be embedded as a closed subset in the product of a collection of regular θ-refinable spaces.
3. X has property (*) and if \mathcal{F} is a free ultrafilter of closed subsets of X, then there is a sequence $\mathcal{W}_1, \mathcal{W}_2, \cdots$ of open covers of X refining $\{X-F : F \in \mathcal{F}\}$ such that if $x \in X$ then there is an integer i such that only finitely many members of \mathcal{W}_i contain x.

Proof. (1) implies (2). This is obvious since every closed subset of a realcompact space is realcompact and the real line is θ-refinable.

(2) implies (3). Let \mathcal{F} be a free ultrafilter of closed subsets of X. According to Lemma 1, there are a θ-refinable space Y, an open cover \mathcal{V} of Y, and a continuous function f taking X into Y such that $f^{-1}(\mathcal{V}) = \{f^{-1}(V) : V \in \mathcal{V}\}$ refines $\{X-F : F \in \mathcal{F}\}$. Since Y is θ-refinable, there is a sequence $\mathcal{V}_1, \mathcal{V}_2, \cdots$ of open covers of Y refining \mathcal{V} such that if $y \in Y$, there is an integer i such that only finitely many members of \mathcal{V}_i contain x. Clearly, if for each i, $\mathcal{W}_i = f^{-1}(\mathcal{V}_i)$, the sequence $\mathcal{W}_1, \mathcal{W}_2, \cdots$ satisfies condition (3) of our theorem.

(3) implies (1). Suppose that X satisfies condition (3) but X is not realcompact. Let \mathcal{L} be a free Z-ultrafilter in X with the countable intersection property. Let \mathcal{F} be the ultrafilter of closed subsets of X that contains \mathcal{L} (\mathcal{F} is uniquely determined by \mathcal{L} since X is normal). Let $\mathcal{W}_1, \mathcal{W}_2, \cdots$ be a sequence of open covers of X refining $\{X-F : F \in \mathcal{F}\}$ such that if $x \in X$ then there is an i such that only finitely many members of \mathcal{W}_i contain x. For each pair (i,j) of positive integers, let $H(i,j) = \{x \in X : x \text{ is contained in at most } j \text{ members of } \mathcal{W}_i\}$. It is easy to see that each $H(i,j)$ is closed. Let \mathcal{H} denote collection of all $H(i,j)$'s. Let $\mathcal{H}_1 = \mathcal{H} - \mathcal{F}$ and $\mathcal{H}_2 = \mathcal{H} - \mathcal{H}_1$. For each H in \mathcal{H}_1, let $F(H)$ denote a member of \mathcal{F} that does not intersect H. Since X is normal, there is a zero-set $Z(H)$ containing $F(H)$ that does not intersect H. For each H in \mathcal{H}_1, $Z(H)$ is in \mathcal{L}. It must be the case that \mathcal{H}_2 is not empty; otherwise, $\{Z(H) : H \in \mathcal{H}_1\}$ would be a countable subcollection of \mathcal{L} with no common part which would be a contradiction.

For each $H = H(i,j)$ in \mathcal{H}_2, there is, by Lemma 2, a discrete subset $K(H)$ of H such that no member of \mathcal{W}_i contains two members of $K(H)$ and $\{st(x, W_i) : x \in K(H)\}$ covers H. Note that $K(H)$ is infinite for otherwise, the collection $\{W \in \mathcal{W}_i : W \cap K(H) \neq \emptyset\}$ would be finite and $\bigcap \{X-W : W \in \mathcal{W}_i, W \cap K(H) \neq \emptyset\}$ would be a member of \mathcal{F} that would
not intersect \(H \) and this would contradict the assumption that \(H \in \mathcal{H}_2 \). Let \(\mathcal{W}_i = \{ W \in \mathcal{W} : W \cap K(H) \neq \emptyset \} \). Since \(K(H) \) is infinite and each point of \(H \) is contained in only finitely many members of \(\mathcal{W}_i \), it must be true that the cardinality of \(K(H) \) is the same as the cardinality of \(\mathcal{W}_i \). Let \(\varphi \) be a one-to-one function from \(K(H) \) onto \(\mathcal{W}_i \). For each \(F \) in \(\mathcal{F} \), let \(M(F) = \{ x \in K(H) : \varphi(x) \cap (F \cap H) \neq \emptyset \} \). Clearly, \(\{ M(F) : F \in \mathcal{F} \} \) has the finite intersection property; and so, there is an ultrafilter \(\mathcal{M} \) of subsets of \(K(H) \) that contains \(\{ M(F) : F \in \mathcal{F} \} \). Since, for each \(x \in K(H) \), it is true that \(X - \varphi(x) \in \mathcal{F} \), it is true that \(\mathcal{M} \) is a free ultrafilter of subsets of \(K(H) \). Since \(K(H) \) is a discrete subset of \(X \), \(K(H) \) is realcompact; and so, there is a countable subcollection \(\{ M_i \} \) of members of \(\mathcal{M} \) with no common part.

Claim 1. If \(M \in \mathcal{M} \), there is a member \(F \) of \(\mathcal{F} \) that is a subset of \(\bigcup_{x \in M} \varphi(x) \).

The argument for this is the same as the argument for Claim 1 in the proof of the theorem in [5].

Claim 2. \(\bigcap_{i=1}^{\infty} \left(\bigcup_{x \in M_i} \varphi(x) \right) \cap H = \emptyset \).

Again, the argument for this is the same as the argument for Claim 2 in the proof of the theorem in [5].

By Claim 1, for each integer \(n \), there is a member \(F_n \) of \(\mathcal{F} \) such that \(F_n \subseteq \bigcup_{x \in M_n} \varphi(x) \). Since \(X \) is normal, there is a zero-set \(Z_n \) such that \(F_n \subseteq Z_n \subseteq \bigcup_{x \in M_n} \varphi(x) \). It follows from Claim 2 that \(\bigcap (Z_n \cap H) = \emptyset \). Thus, for each \(H \in \mathcal{H}_2 \) there is a countable subcollection \(\mathcal{L}(H) \) of \(\mathcal{L} \) such that \(\left(\bigcap_{x \in \mathcal{L}(H)} Z \right) \cap H = \emptyset \). Thus, we have \(\{ Z(H) | H \in \mathcal{H}_1 \} \cup \left(\bigcup_{H \in \mathcal{H}_2} \mathcal{L}(H) \right) \) is a countable subcollection of \(\mathcal{L} \) with no common part which contradicts the assumption that \(\mathcal{L} \) has the countable intersection property.

Note. In [5], the author asked if every normal metacompact space is topologically complete (in the sense of Dieudonné). R. Haydon offers an example of a normal metacompact space which is not complete in [6].

References

Department of Mathematics, Auburn University, Auburn, Alabama 36830