CRITERIA FOR COMPACTNESS AND FOR DISCRETENESS OF LOCALLY COMPACT AMENABLE GROUPS

EDMOND GRANIRER

Abstract. Let G be a locally compact group $P(G) = \{0 \leq \phi \in L_1(G); \int \phi(x) \, dx = 1\}$ and $(L_\phi)(x) = \phi(x) = f(ax)$ for all $a, x \in G$ and $f \in L^\infty(G)$. $0 \leq \Psi \in L^\infty(G)\ast$, $\Psi(1) = 1$ is said to be a topological left invariant mean (TLIM LIM) if $\Psi(af) = \Psi(f)$ for all $a \in G, \phi \in P(G), f \in L^\infty(G)$. The main result of this paper is the

Theorem. Let G be a locally compact group, amenable as a discrete group. If G contains an open σ-compact normal subgroup, then $\text{LIM} = \text{TLIM}$ if and only if G is discrete. In particular if G is an infinite compact amenable as discrete group then there exists some $\Psi \in \text{LIM}$ which is different from normalized Haar measure. A harmonic analysis type interpretation of this and related results are given at the end of this paper.

Introduction. It was known to Fred Greenleaf that if T is the circle group then there are at least two different linear translation invariant functionals $\Psi \geq 0$ on $L^\infty(T)$ with $\Psi(1) = 1$. One of them is certainly that given by the normalized Haar measure λ on T.

It is easy to show and it is known that on any compact G, λ is the unique $0 \leq \Psi \in L^\infty(G)\ast$, $\Psi(1) = 1$ which satisfies the stronger invariance property $\Psi(\phi \ast f) = \Psi(f)$ for all $f \in L^\infty(G), \phi \in P(G)$ (i.e. λ is the unique TLIM on $L^\infty(G)$). This is the case since $\phi \ast f \in C(G)$ for all $\phi \in P(G), f \in L^\infty(G)$ and if $\Psi \in \text{TLIM}$ then $\Psi \in \text{LIM}$ [6, p. 25]. Thus $\Psi = \lambda$ at least on $C(G)$. But then for all $f \in L^\infty(G), \Psi(f) = \Psi(\phi \ast f) = \lambda(\phi \ast f) = \lambda(f)$.

It seemed to Greenleaf that for any compact infinite G, which is amenable as a discrete group, there exist at least two different LIM’s on $L^\infty(G)$. Our main result in this paper implies the

Theorem. Let G be a locally compact group which is abelian or σ-compact and amenable as a discrete group. Then $\text{LIM} = \text{TLIM}$ if and
only if \(G \) is discrete. In particular on any compact infinite \(G \) which is amenable as discrete there exists some \(\Psi \in \text{LIM} \) different from the normalized Haar measure.

Let \(H \) \([H_c] \) be the linear span of \(\{ f - l_a f; f \in L^\infty(G), \ a \in G \} \) \(\{ [f - \phi * f]; \ \phi \in P(G), \ f \in L^\infty(G) \} \) and for \(A \subset L^\infty(G) \) let \(\bar{A} \ [A^*] \) denote the norm \([w^*] \) closure of \(A \) in \(L^\infty(G) \). In any locally compact group one has \(\bar{H} \subset H_c \subset \bar{H}_c^* = \bar{H}^* = L^\infty(G) \). Our last result (combined with some known facts) when restricted to \(\sigma \)-compact locally compact abelian groups runs as follows:

Proposition. (i) If \(G \) is compact and infinite then \(\bar{H} \subseteq \bar{H}_c = \bar{H}_c^* = \bar{H}^* = \{ f \in L^\infty(G); \lambda f = 0 \} \).

(ii) If \(G \) is not compact then \(\bar{H} \subset \bar{H}_c \subset \bar{H}_c^* = \bar{H}^* = L^\infty(G) \). Moreover \(L^\infty(G) \bar{H}_c \) is a nonseparable Banach space and \(\bar{H} = \bar{H}_c \) iff \(G \) is discrete.

We conjecture at the end that for any locally compact amenable group \(G \), if \(G \) is noncompact then \(L^\infty(G) \bar{H}_c \) is a nonseparable Banach space and if \(G \) is nondiscrete then \(\bar{H}_c / \bar{H} \) is nonseparable (with induced quotient norms).

Some more notations. Unless otherwise specified we assume the notations and definitions of Hewitt-Ross [7].

If \(G \) is a locally compact group \(\lambda \) will denote a fixed left Haar measure (with \(\lambda(G) = 1 \) if \(G \) is compact), we write sometimes \(\int \phi(x) \, dx \) instead of \(\int \phi \, d\lambda \).

\(\Psi \in L^\infty(G)^* \) is said to be [topologically] left invariant if \(\Psi(l_a f) = \Psi(f) \) \([\Psi(\phi * f) = \Psi(f)] \) for all \(f \in L^\infty(G), \ \phi \in P(G), \ a \in G \) (where \(l_a f(x) = a f(x) = f(ax) \)). If \(\Psi \) satisfies in addition \(\Psi \geq 0 \) and \(\Psi(1) = 1 \) then \(\Psi \) is said to be a [topological] left invariant mean ([TLIM] LIM resp.). The set of all [TLIM] LIM is also denoted by [TLIM] LIM. Analogously we define [TRIM] RIM the sets of [topological] right invariant means.

We stress that LIM, TLIM are both included in \(L^\infty(G)^* \). The locally compact group \(G \) is said to be amenable if \(\text{LIM} \neq \emptyset \) (or equivalently if \(\text{TLIM} \neq \emptyset \) see [6]). \(G \) is said to be amenable as discrete if \(G_d \) (i.e. \(G \) with the discrete topology) is amenable.

We write sometimes \(\text{LIM}(G) \), \(\text{TLIM}(G) \) to emphasize dependence on the group \(G \). If \(A \subset G \), \(1_A \) denotes the function 1 on \(A \) and zero otherwise. If \(\Psi \in L^\infty(G)^* \), we write \(\Psi(B) \) instead of \(\Psi(1_B) \) for measurable \(B \subset G \). 1 also stands for the constant one function on \(G \).

Proposition 1. Let \(G \) be any noncompact locally compact group and \(\phi \in \text{TRIM} \). If \(B \) is a measurable set and \(\lambda(B) < \infty \) then \(\phi(B) = 0 \).
Proof. Let $\phi_x \in P(G)$ be such that $\phi_x \rightarrow \phi$ in w^* and let $\eta \in P(G)$ be such that $0 \leq \eta(x) \leq \varepsilon$ for all $x \in G$. Then

$$|\phi_x * \eta(x)| = \left| \int \phi_x(y) \eta(y^{-1}x) \, d\lambda \right| \leq \varepsilon \int \phi_x(y) \, d\lambda = \varepsilon.$$

Furthermore if $f \in L^\infty(G)$ then

$$(\phi_x * \eta)(f) = \phi_x(f * \eta) \rightarrow \phi(f * \eta) = \phi(f).$$

(See Wong [10, p. 352].) Hence if $f \in L^\infty \cap L^1$ then $|\phi_x * \eta(f)| \leq \int |f| \, d\lambda$ so $|\phi f| \leq (\int |f| \, d\lambda) \varepsilon$. Thus $\phi f = 0$.

We need the following, probably known, proposition for which we were unable to find a reference.

Proposition 2. Let G be a σ-compact nondiscrete locally compact group. Then for any $\varepsilon > 0$ there exists an open dense set $B \subset G$ with $\lambda(B) < \varepsilon$.

Proof. It is enough to show the existence of a dense set $D \subset G$ with $\lambda(D) = 0$ and the regularity of λ would imply that for some open $D \subset B$, $\lambda(B) < \varepsilon$.

If G is separable then there is some countable dense $D \subset G$. Clearly $\lambda(D) = 0$.

Assume now that G is arbitrary and $N \subset G$ a closed normal subgroup. Let $\theta : G \rightarrow G/N$ be the canonical map. If $D \subset G$ with θD dense in G/N then DN is dense in G. In fact if $U \subset G$ is open with $U \cap DN = \emptyset$ then $UN \cap DN = \emptyset$ so $\theta^{-1}(\theta U \cap \theta D) = UN \cap DN = \emptyset$ thus $\theta U \cap \theta D = \emptyset$ and θU is open in G/N which cannot be.

If G is σ-compact nondiscrete let $U \subset G$ be an open neighborhood of the identity and let $G_0 = \bigcup_{n=0}^{\infty} U^n$. Then G_0 is open compactly generated and there are countably many left cosets of G w.r.t. G_0. The left Haar measure of G_0 can be taken to be the restriction to G_0 of the left Haar measure λ on G. It is enough hence to show that there is a dense null set $D \subset G_0$ i.e. we can and shall assume that G is compactly generated nondiscrete. Let then U_n be a sequence of identity neighborhoods in G with $\lambda(U_n) \rightarrow 0$ and let $N \subset \bigcap_{n=0}^{\infty} U_n$ be a compact normal subgroup such that G/N is metrizable separable (see [7, p. 71]). (G/N is not discrete since $\lambda N = 0$ so N is not open.) Let $D = \{d_i\}^{\infty}_{i=0} \subset G$ be such that its image in G/N is dense. Then $DN \subset G$ is dense and $\lambda(DN) = 0$ since D is countable.

We need in the sequel the following proposition (not in its full force) which is in part due to Følner [3] for discrete amenable groups.

Proposition 3. Let G be a locally compact group which is amenable as a discrete group. For $f \in L^\infty(G)$ let $M(f) = \sup\{\phi(f); \phi \in LIM\}$. Then
for all $f \in L^\infty(G)$

$$Mf = \inf_{\mathcal{A}} \esssup_x \left[\frac{1}{n} \sum_{i=1}^{n} f(a_i x) \right]$$

the inf being taken over the set \mathcal{A} of all finite tuples (a_1, \cdots, a_n) of elements of G.

Proof. Let H be the linear span of $\{f - l_a f; \ a \in G, f \in L^\infty(G)\}$. It is known (and due to Følner [3, p. 6] for discrete G) that:

$$M(f) = \inf_{h \in H} \esssup_x (f(x) + h(x))$$

for all $f \in L^\infty(G)$. (For an easy proof see [5, p. 401].)

Also if $\phi \in \text{LIM}$ then $\phi f = \phi(n^{-1} \sum l_i f)$ hence

$$Mf \leq \inf_{\mathcal{A}} \esssup_x \frac{1}{n} \sum_{i=1}^{n} f(a_i x).$$

Let now $\varepsilon > 0$ and $h_0 \in H$ be such that $M(f) + \varepsilon > \esssup_x (f(x) + h_0(x))$. So $M(f) + \varepsilon \geq f(x) + h_0(x)$ locally a.e. and a fortiori $M(f) + \varepsilon \geq \frac{1}{n} \sum l_i f(x) + h_0(x)$ loc. a.e. for all a_1, \cdots, a_n in G. We claim that a finite set $\{b_1, \cdots, b_k\} \subseteq G$ can be chosen such that $|k^{-1} \sum l_b f(x)| < \varepsilon/2$ loc. a.e. This would imply that $M(f) + 3/2 \varepsilon < k^{-1} \sum l_b f(x)$ loc. a.e., i.e. that

$$M(f) \geq \inf_{\mathcal{A}} \esssup_x \frac{1}{n} \sum_{i=1}^{n} l_i f(x)$$

which would end this proof.

To prove this claim let $h_0 = \sum [f_i - l_i f_i]$. For the finite set $F = \{c_1, \cdots, c_n\}$ choose a finite subset $A = \{b_1, \cdots, b_k\}$ to satisfy $c(A) < \delta c(A)$ for $1 \leq i \leq n$ where $c(B)$ stands for the cardinality of B and $\delta = \varepsilon (\max_{1 \leq i \leq n} \|f_i\|)^{-1} n^{-1}$. Such A can be found by Følner’s characterization of discrete amenable groups [2] (see Namioka [9, p. 22]). Then for each $i \leq n$

$$\left| \frac{1}{k} \sum_{j=1}^{k} (c_i b_j - l_j f_i) \right| = \left| \frac{1}{k} \sum_{j=1}^{k} (l_j b_j - l_j f_i) \right| \leq c(c_i A - A) \|f_i\|/c(A) < \delta \|f_i\| \leq \varepsilon/n.$$

Therefore $|k^{-1} \sum l_b h_0(x)| \leq \varepsilon/2$ loc. a.e. which finishes this proof.

Remarks. 1. It seems that this proposition does not hold true if G is not amenable as a discrete group (even in the case that G is compact).

2. If $m(f) = \inf \{\langle f, \phi \rangle; \ \phi \in \text{LIM}\}$ then

$$m(f) = -M(-f) = \sup_{\mathcal{A}} \left[\essinf_x \frac{1}{n} \sum_{i=1}^{n} f(a_i x) \right].$$
3. One can show in a similar way that the support functional of the set of two-sided invariant means is $M_0f = \inf_{\mathcal{A}} \text{ess sup} \frac{1}{nm} \sum_{i,j} f(a_i b_j)$ where \mathcal{A} is the set of all pairs of finite tuples $(a_1, \cdots, a_n)(b_1, \cdots, b_m)$ of elements of G.

Theorem 1. Let G be a locally compact σ-compact group which is amenable as a discrete group. If $\text{LIM} = \text{TLIM}$ then G is discrete.

Proof. Assume that G is not discrete and let O be an open dense set in G with $\lambda(O) < \frac{1}{2}$. Thus, if G is not compact then $\phi(O) = 0$ for all $\phi \in \text{TRIM}$ hence $\Psi(O^{-1}) = 0$ for all $\Psi \in \text{TLIM}$ (see [4, p. 50]). If G is compact then $\lambda(O^{-1}) = \lambda(O) < \frac{1}{2}$. Let $B = G \sim O^{-1}$. Then B is closed nowhere dense, $\Psi(B) = 1$ if $\Psi \in \text{TLIM}$ and G is not compact while $\lambda(B) > \frac{1}{2}$ if G is compact. (In this last case $\{\lambda\} = \text{TLIM} = \text{TRIM}$.)

In different terminology B is topologically almost left convergent to 1 (or to a positive real $> \frac{1}{2}$ if G is compact).

We claim that $\phi(B) = 0$ for some $\phi \in \text{LIM}$. If not, then

$$m(1_B) = \inf_{\phi \in \text{LIM}} \text{ess sup} \frac{1}{n} \sum_{i=1}^{n} \phi(a_i x) = d > 0.$$

But then there are b_1, \cdots, b_k in G such that $\text{ess sup}_x k^{-1} \sum_{i=1}^{k} \lambda_1 B(b_i x) \geq d/2$ i.e. locally a.e. in x one has $k^{-1} \sum_{i=1}^{k} \lambda_1 B(x) \geq d/2 > 0$. But this contradicts the fact that $A = G \sim \bigcup_{i=1}^{k} B_i^{-1} B$ is open dense, hence of nonzero Haar measure and for $x \in A$, $k^{-1} \sum_{i=1}^{k} \lambda_1 B(b_j x) = 0$. Using Remark 3 above one could easily show that in fact $\phi(B) = 0$ for some two sided invariant mean ϕ on $L^\infty(G)$.

Remarks. Let G be a locally compact amenable group with $G_0 \subseteq G$ an open subgroup. Let λ, λ_0 be the Haar measures on G, G_0. As known and easily shown the λ_0 measurable sets comprise exactly the λ measurable sets of G which are included in G_0. We can and shall choose λ_0 to be the restriction of λ to G_0. (We use the terminology of [7].)

For $f \in L^\infty(G)$ define $(\pi f)(x) = f(x)$ for $x \in G_0$. Then π can be considered as a map onto $L^\infty(G_0)$. If $v \in L^\infty(G_0)^*$ is left invariant and $f \in L^\infty(G)$, let $(S_v f)(z) = v(\pi l_z f)$ for all $z \in G$. Let $\{z_i G_0\}_{i \in I}$ be a fixed decomposition of G into left cosets w.r.t. G_0. Then, the bounded function, $S_v f$ is constant on each $z_i G_0$ (as known) since if $z = z_{i} a$, $a \in G_0$ then $S_v f(z a) = v(\pi l_z a f) = v(\pi l_z f) = S_v f(z)$, since $a \in G_0$. This implies that $S_v f \in UCB_t(G)$ (i.e. is left uniformly continuous as in [7] for all $f \in L^\infty(G)$ and left invariant $v \in L^\infty(G_0)^*$). This is the case since for all $z \in G$, $x \in G_0$, $S_v f(z x) - S_v f(z) = 0$ and G_0 is open.

Choose and fix now some LIM, μ_0 on $C(G)$ and define for any left invariant $v \in L^\infty(G_0)^*$, $Tv \in L^\infty(G)^*$, by $Tv(f) = \mu_0(S_v f)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
As known and readily checked T maps the set of left invariant elements $[\text{LIM}]$ of $L^\infty(G_0)^*$ into the set of left invariant elements $[\text{LIM}]$ of $L^\infty(G)^*$.

The above is a refinement of a construction due to M. M. Day [1, p. 533]. In the above context we have the

Proposition 4. Let G be a locally compact amenable group and $G_0 \subseteq G$ an open normal subgroup.

If $Tv \in \text{TLIM}(G)$ for some $v \in \text{LIM}(G_0)$ then $v \in \text{TLIM}(G_0)$.

Proof. If $f \in L^\infty(G_0)$ denote by f_1 its $\{z_\alpha\}$ periodic extension i.e. $f_1(z_\alpha x) = f(x)$ for all $x \in G_0$ and all α. (Note that $\{z_\alpha\}$ are fixed.) It is clear that f_1 is measurable (since it needs to be so only on compacta [7, p. 131], and G_0 is open).

If $z \in z_\alpha G_0$ then

\[S_v(f_1)(z) = S_v(f)(z) = \nu(\pi l_{z_\alpha} f_1) = \nu(f) \]

since if $x \in G_0$ then $(\pi l_{z_\alpha} f_1)(x) = f_1(z_\alpha x) = f(x)$. Thus $T_v f_1 = \mu_0(S_v f_1) = \mu_0(\nu f \cdot 1_G) = \nu f$.

Fix now $\phi_0 \in P(G)$ with support included in G_0. Then for $f \in L^\infty(G_0)$ and $x \in G_0$ one has:

\[l_{z_\alpha}(\phi_0 * f_1)(x) = \int f_1(y^{-1} z_\alpha x) \phi_0(y) dy = \int f_1((z_\alpha y z_\alpha^{-1})^{-1} z_\alpha x) \phi_0(z_\alpha y z_\alpha^{-1}) \Delta(z_\alpha^{-1}) dy = \int f_1(z_\alpha y^{-1} x) \phi_0(z_\alpha y z_\alpha^{-1}) \Delta(z_\alpha^{-1}) dy = \int f(y^{-1} x) \phi_0(y z_\alpha y z_\alpha^{-1}) \Delta(z_\alpha^{-1}) dy = (\Psi_\alpha \otimes f)(x) \]

where $\Psi_\alpha(y) = \phi_0(z_\alpha y z_\alpha^{-1}) \Delta(z_\alpha^{-1})$ for $y \in G_0$, thus $\Psi_\alpha \in P(G_0)$ and where \otimes stands for convolution in $L_1(G_0)$. Note, that since G_0 is normal $\phi_0(z_\alpha y z_\alpha^{-1})$ has support included in G_0.

It follows that if $z \in z_\alpha G_0$ then

\[S_v(\phi_0 * f_1)(z) = S_v(\phi_0 * f_1)(z) = \nu(\pi l_{z_\alpha} (\phi_0 * f_1)) = \nu(\phi_0 \otimes f). \]

Note that we have used in the last equality only the fact that $v \in \text{LIM}(G_0)$.

From it alone, it follows (see Greenleaf [6, proof of Lemma 222, p. 27]) that $\nu(\phi \otimes f) = \nu(\Psi \otimes f)$ for all $\phi, \Psi \in P(G_0)$.

Hence $T_v(\phi_0 * f_1) = \mu_0(S_v(\phi_0 * f_1)) = \nu(\phi_0 \otimes f)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
But by assumption $Tv \in \text{TLIM}$. Thus $Tv(\phi_0 \ast f_1) = (Tv)f_1 = \nu f$ and hence, for all $f \in L^\infty(G_0)$, $\nu(\phi_0 \otimes f) = \nu(f)$. The above remark implies that $\nu \in \text{TLIM}(G_0)$ and finishes this proof.

Theorem 2. Let G be a locally compact group which is amenable as a discrete group. Assume that G contains a σ-compact open normal subgroup. If $\text{LIM}(G) = \text{TLIM}(G)$ then G is discrete.

Remark. 1. If G has equivalent left and right uniform structures then G contains a neighborhood U of the identity with compact closure such that $xUx^{-1} = U$ for all $x \in G$. Thus $G_0 = \bigcup_{n=0}^{\infty} U^n$ is normal σ-compact and open. In particular the theorem certainly holds true for all locally compact abelian groups G. It also holds true for all σ-compact G which are amenable as discrete groups (take $G = G_0$).

2. We could have assumed in this theorem that G is a locally compact amenable group and the open normal σ-compact G_0 is amenable as discrete. This however readily implies that G is amenable as discrete and we would not gain anything. (The discrete G/G_0 and G_0 with discrete topology are amenable hence so is G with discrete topology.)

Proof. If $\text{TLIM}(G) = \text{LIM}(G)$ then $\text{TLIM}(G_0) = \text{LIM}(G_0)$ since $Tv \in \text{TLIM}(G) = \text{LIM}(G)$ for all $\nu \in \text{LIM}(G_0)$. Thus $\nu \in \text{TLIM}(G_0)$ by the previous proposition. We use now Theorem 1 and get that G_0 is discrete. Thus if $x \in G_0$, $\{x\}$ is open in G_0 hence in G. Hence G is discrete.

The following is an interpretation of our and some known related results from the point of view of harmonic analysis on locally compact groups.

Let H [Hc] denote the linear span of $\{f - l_x f; f \in L^\infty(G), x \in G\}$ or $\{f \ast \phi f; f \in L^\infty(G), \phi \in P(G)\}$. If $A \subset L^\infty(G)$ denote by \tilde{A} [\tilde{A}^*] its norm [$w*$] closure.

We need the following known remark whose proof uses a trick due to I. Namioka [9].

Remark. Let Ψ, Ψ_1, $\Psi_2 \in L^\infty(G)^*$, $\phi \in P(G)$ and define $(L_\phi \Psi)f = \Psi(\phi \ast f)$ for $f \in L^\infty(G)$. Let $\Psi_1 \vee \Psi_2 = \max(\Psi_1, \Psi_2)$ in the lattice $L^\infty(G)^*$ and $\Psi^+ = \Psi \vee O$, $\Psi^- = (-\Psi) \vee O$. If $\Psi \in L^\infty(G)^*$ satisfies $L_\phi \Psi = \Psi$ for all $\phi \in P(G)$, then so do Ψ^+ and Ψ^-. If $\phi \in P(G)$, $L_\phi (\Psi \vee O) \geq (L_\phi \Psi \vee L_\phi O) = \Psi \vee O = \Psi^+$. So $L_\phi \Psi^+ = \Psi^+ \geq 0$. But $(L_\phi \Psi^+ - \Psi^+)(1) = 0$. Thus $L_\phi \Psi^+ = \Psi^+$. (Same true, if L_ϕ is replaced by L_ϕ^* for all $a \in G$.)

Proposition 5. (a) Let G be compact and infinite. Then

$$\tilde{A} \subset \tilde{A}_c = \tilde{A}_c^* = \tilde{A}^* = \{f \in L^\infty(G); \lambda f = 0\}.$$

If G is abelian (or even amenable as a discrete group) then $\tilde{A} \neq \tilde{A}_c$.
(b) Let G be a noncompact locally compact group. Then $\tilde{H} \subset \tilde{H}_c \subset H^* = H_c^* = L^\infty(G)$. Furthermore

(i) $\tilde{H}_c \subset L^\infty(G)$ iff $\tilde{H} = L^\infty(G)$ iff G is not amenable (i.e. $\text{LIM} = \emptyset$).

(ii) If G is σ-compact amenable then $L^\infty(G)/\tilde{H}_c$ is a nonseparable Banach space.

(iii) If G is a σ-compact and amenable as discrete or amenable and containing such an open normal subgroup (in particular if G is locally compact abelian), then $\tilde{H} = \tilde{H}_c$ iff G is discrete.

Proof. (a) $\tilde{H} \subset \tilde{H}_c$ is due to the fact that $\text{TLIM} \subset \text{LIM}$ [6, p. 25], the remark above and the Hahn-Banach theorem (this part with G not necessarily compact). Thus $H^* \subset \tilde{H}^*$. If the inclusion were proper then there would exist some $\phi \in L_1(G)$ such that $\phi(H) = 0$ but $\phi(g) \neq 0$ for some $g \in H_c$. But then ϕ is left invariant and in $L_1(G)$ hence $\phi = c\lambda$ for some scalar $c \neq 0$. Hence $\phi(H_c) = \lambda(H_c) = 0$ which cannot be. So $\tilde{H} \subset \tilde{H}_c \subset H^* = H_c^* = \{f \in L^\infty(G); \lambda f = 0\}$.

That $\tilde{H}_c = \{f \in L^\infty(G); \lambda f = 0\}$ is a consequence of Theorem 7.3, p. 360 of J. C. S. Wong [10] or can directly be proven. The rest of (a) is implied by the main theorem of this paper.

(b) If $H^* \neq L^\infty(G)$ there would exist $0 \neq \phi \in L_1(G)$ such that $\phi(H) = 0$. But then ϕ is left invariant hence so are ϕ^+, ϕ^- and $\phi^+ \neq 0$ or $\phi^- \neq 0$. Assuming that $\phi^+ \neq 0$, $\mu(A) = \int_A \phi^+ d\lambda$ is a measure on the Borel sets of G satisfying all the conditions in Hewitt-Ross [7, p. 194]. Hence $\mu = c\lambda$ for some $c > 0$ (since $\mu \neq 0$).

Since $\mu(G) < \infty$, $\lambda(G) < \infty$ so G is compact. That (b)(i) holds is known and readily shown. (b)(ii) is shown as follows: If $L^\infty(G)/\tilde{H}_c$ would be separable there would exist a sequence $\{f_n\} \subset L^\infty(G)$ such that (if B is the linear span of $\{f_n\}$) $\tilde{H}_c + B$ is norm dense in $L^\infty(G)$ (see [4, p. 63]). But $\tilde{H}_c = \{f \in L^\infty(G); \forall \Psi \in \text{TLIM}; \Psi(f) = 0\}$ for all $\Psi \in \text{TLIM}$ Wong [10, p. 360]. Fix now some $\Psi_0 \in \text{TLIM}$ and let $\Psi_0 f_n = \alpha_n$. Then $\{\Psi_0 f_n = \alpha_n\}$ since any Ψ which belongs to the right side will coincide with $\Psi_0 \geq 1$ on $\tilde{H}_c + B$ hence on $L^\infty(G)$. We apply now [4, Theorem 5, p. 53] with $K = P(G)$ hence $A = \{\Psi \in \text{TLIM}; \forall \Psi_0 f_n = \alpha_n = 0\}$ is norm separable. Thus G is compact. (b)(iii) is just our main theorem and the fact that $\tilde{H} = \tilde{H}_c$ iff $\text{LIM} = \text{TLIM}$ (by our remark above and the Hahn-Banach theorem).

Main conjecture. Let G be any amenable locally compact group. If G is noncompact then $L^\infty(G)/\tilde{H}_c$ is nonseparable. If G is nondiscrete then \tilde{H}_c/\tilde{H} is nonseparable.

Addition. In the meantime W. Rudin sent us a preprint of a paper of his, in which he proves Theorem 2 without the assumption that (*) "G contains an open σ-compact normal subgroup", but with the assumption
that G is amenable as discrete. His proof is different from ours and uses harmonic analysis type arguments. After reading his manuscript we found the following easy argument which removes the restriction (*).

Proposition. Let G_0 be an open noncompact subgroup of G, and

$$G = \bigcup_{\alpha \in \Lambda} x_\alpha G_0, \quad x_\alpha G_0 \cap x_\beta G_0 = \emptyset \quad \text{if } x \neq x_\beta.$$

If $A_0 \subseteq G_0$ is such that $\lambda(A_0) < \infty$ (where λ is the Haar measure on G) then for all $\phi \in \text{TRIM}$, $\phi(\bigcup_{\alpha \in \Lambda} x_\alpha A_0) = 0$.

Proof. Let $B_n \subseteq G_0$ be compact with $\lambda(B_n) = a_n \uparrow \infty$ and let $f_n = a_n^{-1} 1_{B_n}$, $A = \bigcup_{\alpha} x_\alpha A_0$. Then

$$1_A * f_n^\sim(x) = a_n^{-1} \int 1_A(y) 1_{B_n}(y^{-1} x) \, dy$$

$$= a_n^{-1} \lambda(x B_n \cap A) \leq a_n^{-1} \lambda(x G_0 \cap A)$$

$$= a_n^{-1} \lambda(x_\alpha G_0 \cap A) = a_n^{-1} \lambda(x_\alpha A_0) = a_n^{-1} \lambda(A_0),$$

for some (hence all) $\alpha \in \Lambda$.

If $\phi \in \text{TRIM}$ then $\phi(A) = \phi(1_A * f_n^\sim) \leq a_n^{-1} \lambda(A_0) \to 0$.

Remark. If $\Psi \in \text{TLIM}$, then $\Psi(\bigcup_{\alpha} A_0^{-1} x_\alpha^{-1}) = 0$. (See [4, pp. 49-50].)

To remove restriction (*) on G, let G_0 be any σ-compact, noncompact, open subgroup of G, if G is noncompact, and $G = G_0$, if G is compact. Let $A_0 \subseteq G_0$ be open dense with $\lambda(A_0) \leq \frac{1}{2}$ and $A = \bigcup_{\alpha} A_0^{-1} x_\alpha^{-1}$ (as above), $A = A_0$ if G is compact. Let $B = G \sim A$. Then $\psi(B) = 1$ for all $\psi \in \text{TLIM}$, if G is not compact, $\lambda(B) \geq \frac{1}{2}$ if G is compact. B is closed nowhere dense. Continue now as in the proof of Theorem 1.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA