Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Criteria for compactness and for discreteness of locally compact amenable groups


Author: Edmond Granirer
Journal: Proc. Amer. Math. Soc. 40 (1973), 615-624
MSC: Primary 43A07
DOI: https://doi.org/10.1090/S0002-9939-1973-0340962-8
MathSciNet review: 0340962
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a locally compact group $ P(G) = \{ 0 \leqq \phi \in {L_1}(G);\int {\phi (x)dx = 1\} } $ and $ ({l_a}f)(x) = {}_af(x) = f(ax)$ for all $ a,x \in G$ and $ f \in {L^\infty }(G).0 \leqq \Psi \in {L^\infty }{(G)^ \ast },\Psi (1) = 1$ is said to be a [topological] left invariant mean ([TLIM] LIM) if $ \Psi {{\text{(}}_a}f) = \Psi (f)[\Psi (\phi \ast f) = \Psi (f)$] for all $ a \in G,\phi \in P(G),f \in {L^\infty }(G)$. The main result of this paper is the

Theorem. Let $ G$ be a locally compact group, amenable as a discrete group. If $ G$ contains an open $ \sigma $-compact normal subgroup, then LIM = TLIM if and only if $ G$ is discrete. In particular if $ G$ is an infinite compact amenable as discrete group then there exists some $ \Psi \in LIM$ which is different from normalized Haar measure. A harmonic analysis type interpretation of this and related results are given at the end of this paper.$ ^{2}$


References [Enhancements On Off] (What's this?)

  • [1] M. M. Day, Amenable semigroups, Illinois J. Math 1 (1957), 509-544. MR 19, 1067. MR 0092128 (19:1067c)
  • [2] E. Følner, On groups with full Banach mean values, Math. Scand. 3 (1955), 243-254. MR 18, 51. MR 0079220 (18:51f)
  • [3] -, Note on groups with and without full Banach mean value, Math. Scand. 5 (1957), 5-11. MR 20 #1237. MR 0094725 (20:1237)
  • [4] E. Granirer, Exposed points of convex sets and weak sequential convergence, Mem. Amer. Math. Soc. No. 123 (1972). MR 0365090 (51:1343)
  • [5] -, On finite equivalent invariant measures for semigroups of transformations, Duke Math. J. 38 (1971), 395-408. MR 44 #404. MR 0283171 (44:404)
  • [6] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand Reinhold, New York, 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [7] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York, Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [8] I. Namioka, Folner's conditions for amenable semigroups, Math Scand. 15 (1964), 18-28. MR 31 #5062. MR 0180832 (31:5062)
  • [9] -, On certain actions of semigroups on $ L$-spaces, Studia Math. 29 (1967), 63-77. MR 36 #6910. MR 0223863 (36:6910)
  • [10] J. C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351-363. MR 40 #2781. MR 0249536 (40:2781)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07

Retrieve articles in all journals with MSC: 43A07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0340962-8
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society