A GENERALIZATION OF TIETZE'S THEOREM ON CONVEX SETS IN \mathbb{R}^3

NICK M. STAVRAKAS

Abstract. Let $S \subseteq \mathbb{R}^3$ and let $C(S)$ denote the points of local convexity of S. One interesting result which is proven is

Theorem. Let $S \subseteq \mathbb{R}^3$ be such that $S = \text{cl}(C(S))$, S not planar and $C(S)$ is connected. Then $S \subseteq \text{cl}(\text{int } S)$.

1. Introduction. F. A. Valentine in [8] proves that if S is a closed connected subset of \mathbb{R}^d whose points of local nonconvexity are decomposable into n convex sets, then S is $2n+1$ polygonally connected. Guay and Kay in [2] show that if S is a closed connected subset of a topological vector space such that S has exactly n points of local nonconvexity and such that the points of local convexity of S are connected, then S is expressible as a union of $n+1$ or fewer closed convex sets. The purpose of this paper is to give a result which is in the vein of both the latter mentioned results and which generalizes Tietze's theorem on convex sets in \mathbb{R}^3. For related results see [1], [2], [3], [4], [5], [6] and [8].

2. Notations and main results. If $S \subseteq \mathbb{R}^d$, the symbols $C(S)$ and $L(S)$ denote the points of local convexity of S and points of local nonconvexity of S, respectively. The symbols $\text{int } S$ and $\text{cl } S$ denote the interior of S and the closure of S, respectively.

Theorem 1. Let $S \subseteq \mathbb{R}^3$ be such that

1. $S = \text{cl}(C(S))$,
2. S not planar,
3. $C(S)$ is connected.

Then $S \subseteq \text{cl}(\text{int } S)$.

Proof. We first prove $C(S) \subseteq \text{cl}(\text{int } S)$. Suppose not. Then there exists $x \in C(S)$ and an open set M_x about x such that $M_x \cap S$ is convex and $\dim(M_x \cap S) = k < 3$. Let L be the subspace generated by $M_x \cap S$. Let $\mathcal{M} = \{M | M$ is open in $L \cap S, M_x \cap S \subseteq M$ and if $y \in M$, there exists an open set N_y about y such that $N_y \cap S$ is convex and $\dim(N_y \cap S) = k \}$. Note $\mathcal{M} \neq \emptyset$ since $M_x \cap S \subseteq \mathcal{M}$. Partially order \mathcal{M} by set inclusion. Using a standard
Zorn's lemma argument, it may be shown \mathcal{M} has a maximal element A. Since S is not planar, there exists $z \in S$, with $z \notin L$. Select a point q as follows: If $z \in C(S)$, set $z=q$. If $z \in L(S)$, since $S \subseteq \text{cl}(C(S))$, there exists a point $r \in C(S)$, with $r \notin L$. Then set $q=r$. Since $C(S)$ is connected and locally convex, $C(S)$ is polygonally connected. Let l be a simple polygonal arc from x to q in $C(S)$. Regarding x as the starting point of l, let m be the last point of l in $\text{cl} A$. Since $l \subseteq C(S)$, there exists an open set N_m such that $N_m \cap S$ is convex. It is clear that $\dim(N_m \cap S) \geq k$. We consider two cases.

Case 1. $\dim(N_m \cap S)=k$. Then $N_m \cap S \subseteq L$ and since $N_m \cap S$ contains points of l not in A, we have $N_m \cap A \subseteq N_m \cap S$. Then $A \cup (N_m \cap S) \in \mathcal{M}$, contradicting the maximality of A.

Case 2. $\dim(N_m \cap S)>k$. Now since $N_m \cap A \neq \emptyset$, we may choose $p \in N_m \cap A$. Then for any open set N_p such that $N_p \cap S$ is convex, $\dim(N_p \cap S) \geq \dim(N_m \cap S)>k$, contradicting that $A \in \mathcal{M}$.

Thus $C(S) \subseteq \text{cl}(\text{int} S)$ and the latter with hypothesis (1) imply the Theorem.

The following theorem is the main result of this paper.

Theorem 2. Let $S \subseteq R^3$ be closed, S not planar. Suppose $L(S)$ decomposable into n closed line segments $[a_i b_i]$, $1 \leq i \leq n$. Suppose $C(S)$ is connected and that given $x, y \in C(S)$ that x and y may be joined by an arc $l \subseteq S$ such that l is contained in a hyperplane. Then S is $n+1$ polygonally connected.

Proof. The fact that $L(S)$ is decomposable into n closed line segments easily implies that $S \subseteq \text{cl}(C(S))$. Let $x, y \in S$ and let \mathcal{H}_{xy} denote the set of all hyperplanes containing x and y. Define a set F by $F=\{(x, y)|(x, y) \in C(S) \times C(S)$ and if $H_{xy} \in \mathcal{H}_{xy}$, $\dim(H_{xy} \cap [a_i b_i]) \leq 0 \forall i, 0 \leq i \leq n\}$, where in the definition of F we take $\dim \emptyset = -1$. Let $(x, y) \in F$. Then by hypothesis there exists $H_{xy} \in \mathcal{H}_{xy}$ and an arc $l \subseteq S$ from x to y such that $l \subseteq H_{xy}$. Let C be the component of $H_{xy} \cap S$ which contains x and y. Since $\dim(H_{xy} \cap [a_i b_i]) \leq 0, \forall i$, C has at most n points of local nonconvexity and by a result of Valentine [8], C is $n+1$ polygonally connected. Thus x and y may be joined by an $n+1$ polygonal arc lying in S. By Theorem 1, F is dense in $S \times S$, and the theorem follows from a standard limiting argument in the Hausdorff metric.

Bibliography

Department of Mathematics, Clemson University, Clemson, South Carolina 29631