Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

More on tight isometric immersions of codimension two


Author: Chang Shing Chen
Journal: Proc. Amer. Math. Soc. 40 (1973), 545-553
MSC: Primary 53C40
DOI: https://doi.org/10.1090/S0002-9939-1973-0375169-1
MathSciNet review: 0375169
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We continue our investigation on tight isometric immersion of a nonnegatively curved compact manifold $ {M^n}$ into $ {R^{n + 2}}$. Under some minor restrictions, we prove that the immersion is a product embedding of convex hypersurfaces. For surfaces in $ {R^4}$, the restrictions are unnecessary.


References [Enhancements On Off] (What's this?)

  • [1] C. S. Chen, On tight isometric immersion of codimension two, Amer. J. Math. 94 (1972), 974-990. MR 0375168 (51:11364)
  • [2] S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math (2) 56 (1952), 422-430. MR 14, 408 MR 0050962 (14:408e)
  • [3] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifold, Amer. J. Math. 79 (1957), 306-318; II, Michigan Math. J. 5 (1958), 5-12. MR 18, 927; 20 #4301. MR 0084811 (18:927a)
  • [4] B. W. Hempstead, Tight immersions in higher dimensions, Thesis, University of Minnesota, Minneapolis, Minn., 1970.
  • [5] N. H. Kuiper, Immersion with minimal absolute total curvature, Invent. Math. 10 (1970), 209-238. MR 42 #2499. MR 0267597 (42:2499)
  • [6] -, Tight topological embeddings of the Moebius band, J. Differential Geometry 6 (1972), 271-283. MR 0314057 (47:2609)
  • [7] J. A. Little and W. F. Pohl, On tight immersion of maximal codimension, Invent. Math. 13 (1971), 179-204. MR 0293645 (45:2722)
  • [8] J. D. Moore, Isometric immersion of Riemannian products, J. Differential Geometry 5 (1971), 159-168. MR 0307128 (46:6249)
  • [9] B. O'Neill, Isometric immersion of flat Riemannian manifolds in Euclidean space, Michigan Math. J. 9 (1962), 199-205. MR 27 #2941. MR 0152970 (27:2941)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40

Retrieve articles in all journals with MSC: 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0375169-1
Keywords: Tight isometric immersion, product embedding, curvature, top set, convex curves, flat torus
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society